Microscopy Research and Technique最新文献

筛选
英文 中文
Augmented histopathology: Enhancing colon cancer detection through deep learning and ensemble techniques. 增强组织病理学:通过深度学习和集合技术增强结肠癌检测。
IF 2 3区 工程技术
Microscopy Research and Technique Pub Date : 2024-09-30 DOI: 10.1002/jemt.24692
J Gowthamy, S S Subashka Ramesh
{"title":"Augmented histopathology: Enhancing colon cancer detection through deep learning and ensemble techniques.","authors":"J Gowthamy, S S Subashka Ramesh","doi":"10.1002/jemt.24692","DOIUrl":"https://doi.org/10.1002/jemt.24692","url":null,"abstract":"<p><p>Colon cancer poses a significant threat to human life with a high global mortality rate. Early and accurate detection is crucial for improving treatment quality and the survival rate. This paper presents a comprehensive approach to enhance colon cancer detection and classification. The histopathological images are gathered from the CRC-VAL-HE-7K dataset. The images undergo preprocessing to improve quality, followed by augmentation to increase dataset size and enhance model generalization. A deep learning based transformer model is designed for efficient feature extraction and enhancing classification by incorporating a convolutional neural network (CNN). A cross-transformation model captures long-range dependencies between regions, and an attention mechanism assigns weights to highlight crucial features. To boost classification accuracy, a Siamese network distinguishes colon cancer tissue classes based on probabilities. Optimization algorithms fine-tune model parameters, categorizing colon cancer tissues into different classes. The multi-class classification performance is evaluated in the experimental evaluation, which demonstrates that the proposed model provided highest accuracy rate of 98.84%. In this research article, the proposed method achieved better performance in all analyses by comparing with other existing methods. RESEARCH HIGHLIGHTS: Deep learning-based techniques are proposed. DL methods are used to enhance colon cancer detection and classification. CRC-VAL-HE-7K dataset is utilized to enhance image quality. Hybrid particle swarm optimization (PSO) and dwarf mongoose optimization (DMO) are used. The deep learning models are tuned by implementing the PSO-DMO algorithm.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of Bartonella henselae in feline erythrocytes in Egypt by using Giemsa staining, transmission electron microscopy, and polymerase chain reaction. 利用吉氏染色法、透射电子显微镜和聚合酶链反应检测埃及猫红细胞中的鸡巴顿氏菌。
IF 2 3区 工程技术
Microscopy Research and Technique Pub Date : 2024-09-25 DOI: 10.1002/jemt.24685
Reem M Alsaadawy, Amal S M Sayed, Magda M Ali, Sary Kh Abd-Elghaffar
{"title":"Detection of Bartonella henselae in feline erythrocytes in Egypt by using Giemsa staining, transmission electron microscopy, and polymerase chain reaction.","authors":"Reem M Alsaadawy, Amal S M Sayed, Magda M Ali, Sary Kh Abd-Elghaffar","doi":"10.1002/jemt.24685","DOIUrl":"https://doi.org/10.1002/jemt.24685","url":null,"abstract":"<p><p>Bartonella species (Bartonella spp.) have gained recognition as a significant human pathogen, implicated in a wide range of diseases. Among these, Bartonella henselae infection has been extensively studied for its primary occurrence in cats and its role in the development of cat-scratch disease in humans. While light microscopy and transmission electron microscopy (TEM) have traditionally played crucial roles in identifying causative agents of infectious diseases, including Bartonella spp., the accuracy of these methods in identifying Bartonella spp. remains undefined. Therefore, this study aims to bridge this gap by employing both light microscopy and TEM to detect Bartonella in feline blood samples and to confirm B. henselae with polymerase chain reaction (PCR). Examination of blood smears stained with Giemsa and toluidine blue semithin sections by using light microscopy revealed the presence of intraerythrocytic corpuscles, suggesting Bartonella infection in six out of 33 examined cat blood samples. TEM findings corroborated these observations, showcasing the engulfment of bacteria by the erythrocyte membrane, along with the presence of some Bartonella spp., adhering to the erythrocyte wall. PCR-based molecular detection confirmed the presence of B. henselae in these six samples. It is concluded that light microscopy and TEM are considered valuable in the screening of cats' blood for the potential presence of Bartonella. However, further molecular techniques are essential for precise identification and confirmation of specific Bartonella spp. RESEARCH HIGHLIGHTS: Giemsa-stained blood smear and semithin section showed potential intraerythrocytic Bartonella spp. corpuscles. TEM demonstrated the engulfment of Bartonella spp. by the erythrocyte membrane, along with the presence of some Bartonella spp. adhering to the erythrocyte wall. Molecular analysis of blood samples from cats by PCR unveiled that six out of 33 (18.18%) samples tested positive for B. henselae infection.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biofabrication of GO-Ag nanocomposite using Cucumis callosus (kachri) fruits: Enhanced antibacterial properties and green synthesis approach. 利用 Cucumis callosus (kachri) 果实进行 GO-Ag 纳米复合材料的生物制造:增强抗菌性能和绿色合成方法。
IF 2 3区 工程技术
Microscopy Research and Technique Pub Date : 2024-09-25 DOI: 10.1002/jemt.24689
Mamata, Chandra Kumar, Vishvanath Tiwari, Ştefan Ţălu, Kamlendra Awasthi, Anirban Dutta
{"title":"Biofabrication of GO-Ag nanocomposite using Cucumis callosus (kachri) fruits: Enhanced antibacterial properties and green synthesis approach.","authors":"Mamata, Chandra Kumar, Vishvanath Tiwari, Ştefan Ţălu, Kamlendra Awasthi, Anirban Dutta","doi":"10.1002/jemt.24689","DOIUrl":"https://doi.org/10.1002/jemt.24689","url":null,"abstract":"<p><p>This study presents a novel, environmentally sustainable method for the synthesis of graphene oxide (GO) sheets decorated uniformly with silver nanoparticles (Ag NPs) ranging in size from 4 to 34 nm. The reduction of AgNO<sub>3</sub> is achieved using an extract derived from Cucumis callosus fruit, which serves as a dual-function stabilizing and reducing agent. Cucumis callosus, belonging to the Cucurbitaceae family and native to regions such as India, South America, Thailand, Africa, and Egypt, is recognized for its substantial nutritional and medicinal value, encompassing antioxidant, antidiabetic, anticancer, and anti-inflammatory properties. In this study, we explore the utilization of Cucumis callosus extract for the first time in synthesizing Ag NPs, employing a green synthesis approach to produce GO-Ag nanocomposites. Comprehensive characterization techniques confirm the structural integrity and quality of the synthesized nanocomposites. The antibacterial efficacy of the green-synthesized Ag-decorated GO nanocomposites was evaluated using the disk diffusion method against Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) bacteria at varying dosages. The nanocomposites demonstrated dose-dependent antibacterial activity against both bacterial strains, with a notably heightened effect observed against Gram-negative bacteria. These findings underscore the potential of Cucumis callosus as a promising candidate for the sustainable preparation of GO-Ag nanocomposites with enhanced antibacterial properties, suitable for various biomedical and environmental applications. RESEARCH HIGHLIGHTS: This work presents a simple, environmentally free, and cost-effective green synthesis method to decorate uniformly small (4-34 nm) spherical Ag NPs on the GO sheets. Ag NPs were produced by reducing AgNO<sub>3</sub> using Cucumis callosus fruit extract as a stabilizing and reducing agent. The nanocomposites show dosage-dependent antibacterial activities against both Gram-positive and Gram-negative bacteria, but the antibacterial effect is higher against the Gram-negative bacteria. Synthesis of these nanocomposites via the green route using an herbal plant/fruit like Cucumis callosus will benefit the medical industry.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microplastics induced ileum damage: Morphological and immunohistochemical study. 微塑料引起的回肠损伤:形态学和免疫组化研究
IF 2 3区 工程技术
Microscopy Research and Technique Pub Date : 2024-09-24 DOI: 10.1002/jemt.24696
Shaimaa M M Saleh, Souzan Abdel-Zaher, Mahmoud S Mohamed, Alaa El-Din H Sayed
{"title":"Microplastics induced ileum damage: Morphological and immunohistochemical study.","authors":"Shaimaa M M Saleh, Souzan Abdel-Zaher, Mahmoud S Mohamed, Alaa El-Din H Sayed","doi":"10.1002/jemt.24696","DOIUrl":"https://doi.org/10.1002/jemt.24696","url":null,"abstract":"<p><p>Microplastics (MPs) are small pieces of plastic that are widely distributed in the environment and accumulate within living organisms, so they are the most common types of pollutants at the present time. One of the most widespread types of MP in the environment is polyethylene (PE) MPs. There have been many published studies on the effect of PE MPs combined with other pollutants or chemicals such as benzoanthracene, emamectin benzoate, heavy metals and 4-nonylphenol, on some marine, amphibian, and mouse models. However, research has rarely been conducted on how single-use PE MPs affect the ileum of mammals. The current study is focused on the impact of PE MP exposure with different concentration (6, 60, 600 μg/mL PE/MPs) for 15 days, followed by 15 days of recovery on small intestine(ileum) of C57BL/6 murine model with precision and detail at the cell level by using different technique (histology, histochemistry, immunohistochemistry, and transmission electron microscope). Results demonstrated that the intestinal tissue exhibited nuclear pyknosis, villus deformation, shortness of villi, degeneration of lamina propria, hyperplasia of goblet cells, increase of goblet cells secretion, Alcian blue and Periodic acid-Schiff stain positivity of intact goblet cells, highly significance of P53 immunoreaction expression specially in high concentrations (600 μg/day of PE/MPs) and Ki-67 immunoreaction expression. RESEARCH HIGHLIGHTS: Different doses of microplastics (MPs) induced sever morphological alternations and clinical observations. MPs were deposits in cells and were observed in ultrastructure study. Recovery period able to ameliorate to the most extent the alternations caused by MPs administration.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges and solutions in FISH for formalin-fixed paraffin-embedded tissue: A scoping review. 福尔马林固定石蜡包埋组织 FISH 的挑战与解决方案:范围综述。
IF 2 3区 工程技术
Microscopy Research and Technique Pub Date : 2024-09-24 DOI: 10.1002/jemt.24702
Cássia Campanhol Lemes, Andressa Germano da Silva, Daniel Araki Ribeiro, Andréa Cristina de Moraes Malinverni
{"title":"Challenges and solutions in FISH for formalin-fixed paraffin-embedded tissue: A scoping review.","authors":"Cássia Campanhol Lemes, Andressa Germano da Silva, Daniel Araki Ribeiro, Andréa Cristina de Moraes Malinverni","doi":"10.1002/jemt.24702","DOIUrl":"10.1002/jemt.24702","url":null,"abstract":"<p><p>Fluorescence in situ hybridization (FISH) has revolutionized molecular cytogenetic analysis since the 1980s, enabling precise localization of DNA sequences in cells and tissues. Despite its relevance, applying FISH to formalin-fixed paraffin-embedded (FFPE) tissue samples encounters significant technical challenges. This review addresses the main issues encountered in this context, such as inadequate fixation, contamination, block and slide age, inadequate pretreatment, and FISH technique. Proposed solutions include optimized pretreatment protocols, monitoring of blockage, careful selection of probes, and thorough analysis of results. Implementing good laboratory practices and quality control strategies are essential to ensure reliable results. Additionally, the use of emerging technologies such as artificial intelligence and digital pathology offers new perspectives for improving the efficiency and accuracy of FISH in FFPE samples. This review highlights the importance of a careful and personalized approach to overcome the technical challenges associated with FISH in FFPE samples, strengthening its role in research and clinical diagnosis. RESEARCH HIGHLIGHTS: Few FISH studies on FFPE: The scarcity of studies specifically addressing FISH applications in FFPE tissues highlights a critical gap in the literature. Troubleshooting FISH in FFPE tissues: Identifying and addressing common challenges in FISH techniques when applied to FFPE samples, such as signal quality and hybridization efficiency. Critical aspects of FISH technique: Discuss the main technical considerations crucial for successful FISH in FFPE tissues, including sample preparation, probe selection, and protocol optimization.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human lung cancer classification and comprehensive analysis using different machine learning techniques. 利用不同的机器学习技术对人类肺癌进行分类和综合分析。
IF 2.5 3区 工程技术
Microscopy Research and Technique Pub Date : 2024-09-18 DOI: 10.1002/jemt.24682
K Priyadarshini,S Ahamed Ali,K Sivanandam,Manjunathan Alagarsamy
{"title":"Human lung cancer classification and comprehensive analysis using different machine learning techniques.","authors":"K Priyadarshini,S Ahamed Ali,K Sivanandam,Manjunathan Alagarsamy","doi":"10.1002/jemt.24682","DOIUrl":"https://doi.org/10.1002/jemt.24682","url":null,"abstract":"Lung cancer is the most common causes of death among all cancer-related diseases. A lung scan examination of the patient is the primary diagnostic technique. This scan analysis pertains to an MRI, CT, or X-ray. The automated classification of lung cancer is difficult due to the involvement of multiple steps in imaging patients' lungs. In this manuscript, human lung cancer classification and comprehensive analysis using different machine learning techniques is proposed. Initially, the input images are gathered using lung cancer dataset. The proposed method processes these images using image-processing techniques, and further machine learning techniques are utilized for categorization. Seven different classifiers including the k-nearest neighbors (KNN), support vector machine (SVM), decision tree (DT), multinomial naive Bayes (MNB), stochastic gradient descent (SGD), random forest (RF), and multi-layer perceptron (MLP) classifier are used, which classifies the lung cancer as malignant and benign. The performance of the proposed approach is examined using performances metrics, like positive predictive value, accuracy, sensitivity, and f-score are evaluated. Among them, the performance of the MLP classifier provides 25.34%, 45.39%, 15.39%, 41.28%, 22.17%, and 12.12% higher accuracy than other KNN, SVM, DT, MNB, SGD, and RF respectively. RESEARCH HIGHLIGHTS: Lung cancer is a leading cause of cancer-related death. Imaging (MRI, CT, and X-ray) aids diagnosis. Automated classification of lung cancer faces challenges due to complex imaging steps. This study proposes human lung cancer classification using diverse machine learning techniques. Input images from lung cancer dataset undergo image processing and machine learning. Classifiers like k-nearest neighbors, support vector machine, decision tree, multinomial naive Bayes, stochastic gradient descent, random forest, and multi-layer perceptron (MLP) classify cancer types; MLP excels in accuracy.","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel simplified method for assessing crystal length and crystalline content in dental ceramics 评估牙科陶瓷晶体长度和结晶含量的新型简化方法
IF 2.5 3区 工程技术
Microscopy Research and Technique Pub Date : 2024-09-17 DOI: 10.1002/jemt.24700
Danilo Cassiano Ferraz, Lucas Nascimento Tavares, Isadora Aparecida Ribeiro Reis, William W. Brackett, Rafael Rocha Pacheco, Luís Henrique Araújo Raposo
{"title":"A novel simplified method for assessing crystal length and crystalline content in dental ceramics","authors":"Danilo Cassiano Ferraz, Lucas Nascimento Tavares, Isadora Aparecida Ribeiro Reis, William W. Brackett, Rafael Rocha Pacheco, Luís Henrique Araújo Raposo","doi":"10.1002/jemt.24700","DOIUrl":"https://doi.org/10.1002/jemt.24700","url":null,"abstract":"<jats:label/>The purpose of this study was to introduce a novel and simple method of evaluating the crystal length and crystalline content of lithium disilicate dental ceramics using images obtained from scanning electron microscopy (SEM) and analyzed with ImageJ (NIH) processing software. Three evaluators with varying experience levels assessed the average crystal length and percentage of crystalline content in four commercial lithium disilicate reinforced glass ceramic materials: IPS e.max (Ivoclar Vivadent), Rosetta SM (Hass), T‐Lithium (Talmax), and IRIS CAD (Tianjin). The specimens, prepared from partially crystallized CAD/CAM blocks (3.0 mm<jats:sup>3</jats:sup>), were fully crystallized and treated with 5% hydrofluoric acid for 20 s prior to SEM analysis. After acquiring the SEM images, ImageJ software was used to evaluate the average crystal length and crystalline content on the surface of the different ceramics. An inter‐operator agreement was observed (ICC/<jats:italic>p</jats:italic> = 0.724), indicating that assessments by the various operators were similar across all ceramic materials tested (<jats:italic>p</jats:italic> &lt; 0.001). When crystal length and crystalline content were compared, IRIS CAD exhibited significant differences compared to the other materials (<jats:italic>p</jats:italic> &lt; 0.001), showing a less dense crystalline matrix based on the average length of crystals and the percentage of crystals per unit area. The use of this software facilitated the evaluation of crystalline content and average crystal lengths in dental ceramics using SEM images, and demonstrated very low variability among different operators.Research Highlights<jats:list list-type=\"bullet\"> <jats:list-item>The described method, using ImageJ open‐source software, provides precise and reliable measurements of crystal length and crystalline content in lithium disilicate ceramics, with high inter‐operator agreement.</jats:list-item> <jats:list-item>The proposed method identified higher crystalline content in IPS e.max CAD compared to Rosetta SM CAD and T‐lithium CAD ceramics, while IRIS CAD exhibited significantly lower crystalline content and larger average crystal length.</jats:list-item> <jats:list-item>The novel, simplified method for assessing crystal length and crystalline content presented in this study may also be useful for evaluating other dental ceramics.</jats:list-item> </jats:list>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoactivated riboflavin‐doped hydroxy apatite nanospheres infiltered in orthodontic adhesives 光活化核黄素掺杂羟基磷灰石纳米球渗入正畸粘合剂中
IF 2.5 3区 工程技术
Microscopy Research and Technique Pub Date : 2024-09-13 DOI: 10.1002/jemt.24687
Salem Almoammar, Abdullah A. Alnazeh, Muhammad Abdullah Kamran, Mohammed Mohsen Al Jearah, Muhammad Qasim, Anshad M. Abdulla
{"title":"Photoactivated riboflavin‐doped hydroxy apatite nanospheres infiltered in orthodontic adhesives","authors":"Salem Almoammar, Abdullah A. Alnazeh, Muhammad Abdullah Kamran, Mohammed Mohsen Al Jearah, Muhammad Qasim, Anshad M. Abdulla","doi":"10.1002/jemt.24687","DOIUrl":"https://doi.org/10.1002/jemt.24687","url":null,"abstract":"<jats:label/>To assess micro‐tensile bond strength (μTBS), degree of conversion (DC), microleakage (ML) antibacterial efficacy, and adhesive remnant index (ARI) of orthodontic brackets to enamel with different concentrations of photoactivated riboflavin‐doped hydroxyapatite (HA) nanospheres (NS) (0%,1%,5% and 10%) and 0.5 wt% RF alone in orthodontic adhesive. Samples were included on the predefined inclusion criteria and positioned up to the cementoenamel junction (CEJ). Hydroxy apatite nanospheres (HANS) commercially bought were doped with RF. Surface characterization of HANS and RF‐doped HANS were assessed along with EDX analysis. Samples were grouped based on experimental orthodontic adhesive modification. Group 1: Transbond XT no modification, Group 2: experimental Transbond XT 0.5 wt% RF, Group 3: experimental Transbond XT 0.5 wt% RF‐doped 1% HANS, Group 4: experimental Transbond XT 0.5 wt % RF‐doped 5% HANS and Group 5: Experimental Transbond XT 0.5 wt% RF‐doped 10% HANS. Brackets were placed based on different adhesive modifications and samples underwent thermocycling. Samples were evaluated for μTBS, DC, and ML. The type of failure was assessed using ARI. Adhesive modified and un‐modified in four different concentrations (0%, 1%, 5%, and 10%) and 0.5 wt% RF only were used to test efficacy against <jats:italic>Streptococcus mutans</jats:italic> (<jats:italic>S.mutans</jats:italic>). The survival rate of <jats:italic>S.mutans</jats:italic> and ML was determined using the Kruskal–Wallis Test. For the analysis of μTBS, ANOVA was employed, followed by a post‐hoc Tukey HSD multiple comparisons test. The highest μTBS and lowest ML were observed in Group 2 experimental Transbond XT 0.5 wt% RF only. The lowest μTBS, highest ML, and lowest DC was seen in Group 5 experimental Transbond XT 0.5 wt% RF‐doped 10% HANS. Samples in Group 1 in which Transbond XT was used as adhesive demonstrated significantly the highest microbial count of <jats:italic>S.mutans</jats:italic> and DC. Photoactivated RF‐doped HANS in 1% and 0.5 wt% Riboflavin alone in orthodontic adhesive for metallic bracket bonding improved micro tensile bond strength, ML, DC, and antibacterial scores.Research Highlights<jats:list list-type=\"bullet\"> <jats:list-item>The highest μTBS and lowest ML were observed in Group 2 experimental Transbond XT 0.5 wt% RF only.</jats:list-item> <jats:list-item>The lowest μTBS, highest ML, and lowest DC was seen in Group 5 experimental Transbond XT 0.5 wt% RF‐doped 10% HA‐NS.</jats:list-item> <jats:list-item>Samples in Group 1 in which Transbond XT was used as adhesive demonstrated significantly the highest microbial count of <jats:italic>S.mutans</jats:italic> and DC</jats:list-item> </jats:list>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the aerodynamic characteristics of dragonfly leading edge 蜻蜓前缘气动特性研究
IF 2.5 3区 工程技术
Microscopy Research and Technique Pub Date : 2024-09-11 DOI: 10.1002/jemt.24693
Yanjuan Hu, Chengyu Zhu, Qiang Liu, Duanyi Zhu, Jiaheng Xue, Qiang Li, Xiaoqin Zhou
{"title":"Research on the aerodynamic characteristics of dragonfly leading edge","authors":"Yanjuan Hu, Chengyu Zhu, Qiang Liu, Duanyi Zhu, Jiaheng Xue, Qiang Li, Xiaoqin Zhou","doi":"10.1002/jemt.24693","DOIUrl":"https://doi.org/10.1002/jemt.24693","url":null,"abstract":"<jats:label/>Dragonflies are some of the most stable and maneuverable flying organisms. To explore the mechanism of how dragonfly leading edges enhance flight lift, this article conducts a detailed study on the leading edge veins and the microstructures on them of dragonfly wings. Observations have discovered the special leading edge vein and the regularly distributed microstructures on the leading edge vein. A biomimetic model has been established, and computational fluid dynamics (CFD) simulation analysis has been conducted on the biomimetic model. The analysis explores the effects of microstructure characteristics, distribution patterns, and positions on the aerodynamic characteristics of dragonfly gliding. The analysis shows that the leading edge structure influences the incoming flow, simultaneously promotes the formation of the leading edge vortex (LEV), and increases the lift‐to‐drag ratio by up to 4%. A wing prototype featuring biomimetic microstructures is subsequently fabricated and tested in wind tunnel experiments. Compared with a control group without leading edge structures, the airflow passing through the biomimetic structures is influenced by the shape and arrangement of these structures. The smoother transition of the leading edge vein's shape facilitates the flow of air. The microstructures primarily filter and accelerate the airflow. The spacing of the microstructures affects the stability of the airflow, thereby influencing aerodynamic performance. Additionally, the middle‐row arrangement of microstructures is more beneficial for gliding conditions, while the upper‐row arrangement is more advantageous for flapping conditions. These findings enhance our understanding of insect wings and advance micro aerial vehicle applications.Research HighlightsThis study observed the leading‐edge veins and microstructures of dragonfly wings in detail. Using a biomimetic model and computational fluid dynamics (CFD) simulations, it was found that these leading‐edge structures promote the formation of leading‐edge vortices (LEV), increasing the lift‐to‐drag ratio by up to 4%. Wind tunnel experiments demonstrated that wings with biomimetic microstructures significantly improved airflow smoothness and lift compared with control wings. Additionally, the arrangement of microstructures greatly affects airflow stability and aerodynamic performance, with middle‐row arrangements being more beneficial for gliding and upper‐row arrangements for flapping conditions. These findings enhance our understanding of insect wings and provide innovative guidance for designing efficient micro aerial vehicles.","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multidepth quantitative analysis of liver cell viscoelastic properties: Fusion of nanoindentation and finite element modeling techniques 肝细胞粘弹性特性的多深度定量分析纳米压痕和有限元建模技术的融合
IF 2.5 3区 工程技术
Microscopy Research and Technique Pub Date : 2024-09-10 DOI: 10.1002/jemt.24697
Yi Zeng, Xianping Liu, Zuobin Wang, Wei Gao, Shengli Zhang, Ying Wang, Yunqing Liu, Haiyue Yu
{"title":"Multidepth quantitative analysis of liver cell viscoelastic properties: Fusion of nanoindentation and finite element modeling techniques","authors":"Yi Zeng, Xianping Liu, Zuobin Wang, Wei Gao, Shengli Zhang, Ying Wang, Yunqing Liu, Haiyue Yu","doi":"10.1002/jemt.24697","DOIUrl":"https://doi.org/10.1002/jemt.24697","url":null,"abstract":"<jats:label/>Liver cells are the basic functional unit of the liver. However, repeated or sustained injury leads to structural disorders of liver lobules, proliferation of fibrous tissue and changes in structure, thus increasing scar tissue. Cellular fibrosis affects tissue stiffness, shear force, and other cellular mechanical forces. Mechanical force characteristics can serve as important indicators of cell damage and cirrhosis. Atomic force microscopy (AFM) has been widely used to study cell surface mechanics. However, characterization of the deep mechanical properties inside liver cells remains an underdeveloped field. In this work, cell nanoindentation was combined with finite element analysis to simulate and analyze the mechanical responses of liver cells at different depths in vitro and their internal responses and stress diffusion distributions after being subjected to normal stress. The sensitivities of the visco‐hyperelastic parameters of the finite element model to the effects of the peak force and equilibrium force were compared. The force curves of alcohol‐damaged liver cells at different depths were measured and compared with those of undamaged liver cells. The inverse analysis method was used to simulate the finite element model in vitro. Changes in the parameters of the cell model after injury were explored and analyzed, and their potential for characterizing hepatocellular injury and related treatments was evaluated.Research Highlights<jats:list list-type=\"bullet\"> <jats:list-item>This study aims to establish an in vitro hyperelastic model of liver cells and analyze the mechanical changes of cells in vitro.</jats:list-item> <jats:list-item>An analysis method combining finite element analysis model and nanoindentation was used to obtain the key parameters of the model.</jats:list-item> <jats:list-item>The multi‐depth mechanical differences and internal structural changes of injured liver cells were analyzed.</jats:list-item> </jats:list>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信