Methods in enzymologyPub Date : 2025-01-01Epub Date: 2024-12-05DOI: 10.1016/bs.mie.2024.11.018
Nupur Bhatter, Pavel Ivanov
{"title":"A general framework to analyze potential roles of tDRs in mammalian protein synthesis.","authors":"Nupur Bhatter, Pavel Ivanov","doi":"10.1016/bs.mie.2024.11.018","DOIUrl":"10.1016/bs.mie.2024.11.018","url":null,"abstract":"<p><p>tRNA-derived RNAs (tDRs) are a heterogeneous class of small non-coding RNAs that have been implicated in numerous biological processes including the regulation of mRNA translation. A subclass of tDRs called tRNA-derived stress-induced RNAs (tiRNAs) have been shown to participate in translational control under stress where specific tiRNAs repress protein synthesis. Here, we use a prototypical tiRNA (5'-tiRNA<sup>Ala</sup>) that inhibits mRNA translation in vitro and in cells as a model to study potential roles of tDRs in translational control. Specifically, we propose to use commercially available and custom-made in vitro translation systems together with sensitive luciferase-based mRNA reporters as well as transfection studies to determine potential effects of a given tDR on various aspects of protein synthesis. We overview methods to probe the capacity of specific tDRs to target specific steps of mRNA translation initiation, the most regulated step in translational control. Using 5'-tiRNA<sup>Ala</sup> as an example, we analyze its effects on the integrity of the m<sup>7</sup>GTP (cap)-bound eIF4F complex and phosphorylation of eIF2α, the key regulatory molecule of the Integrated Stress Response. Using transfection studies, we also monitor whether tDRs can promote formation of stress granules (SGs), RNA granules are often formed in response to global translation repression in live cells. This simple workflow offers fast, scalable, and reliable analyses of a potential involvement of specific tDRs in the modulation of protein synthesis and provides initial hints on molecular mechanisms that underline such mRNA translation regulation.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"711 ","pages":"29-46"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2025-01-01Epub Date: 2025-03-12DOI: 10.1016/bs.mie.2025.01.030
Her Xiang Chai, Rebecca S Bamert, Gavin J Knott
{"title":"Methods for Cas13a expression and purification for use in CRISPR diagnostics.","authors":"Her Xiang Chai, Rebecca S Bamert, Gavin J Knott","doi":"10.1016/bs.mie.2025.01.030","DOIUrl":"10.1016/bs.mie.2025.01.030","url":null,"abstract":"<p><p>The threat of emerging infectious diseases (e.g., SARS-CoV-2 the RNA virus responsible for the COVID-19 pandemic) has highlighted the importance of accurate and rapid testing for screening, patient diagnosis, and effective treatment of infectious disease. Nucleic acid diagnostic tools such as qPCR are considered the gold standard, providing a sensitive, accurate, and robust method of detection. However, these conventional diagnostic platforms are resource intensive, limited in some applications, and are almost always confined to laboratory settings. With the increasing demand for low-cost, rapid, and accurate point-of-care diagnostics, CRISPR-based systems have emerged as powerful tools to augment detection capabilities. Of note is the potent RNA detection enzyme, Leptotrichia buccalis (Lbu) Cas13a, which is capable of rapid RNA detection in complex mixtures with or without pre-amplification. To support its wide-spread use, we describe a detailed method for the expression, purification, and validation of LbuCas13a for use in molecular diagnostics.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"712 ","pages":"225-244"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143692822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2025-01-01Epub Date: 2025-02-07DOI: 10.1016/bs.mie.2025.01.011
Alberto Marin-Gonzalez, Adam T Rybczynski, Roger S Zou, Taekjip Ha
{"title":"Measuring double-strand break repair events in mammalian cells with multi-target CRISPR.","authors":"Alberto Marin-Gonzalez, Adam T Rybczynski, Roger S Zou, Taekjip Ha","doi":"10.1016/bs.mie.2025.01.011","DOIUrl":"10.1016/bs.mie.2025.01.011","url":null,"abstract":"<p><p>A mechanistic understanding of the different pathways involved in the repair of DSBs is a timely, yet challenging task. CRISPR-Cas9 is a powerful tool to induce DNA double-strand breaks (DSB) at defined genomic locations to study the ensuing repair response, but Cas9 studies are typically limited by i) low-throughput induction of DSB, by targeting only one or a few genomic sites, or ii) the use of genetically integrated reporter systems, which do not always reflect endogenous phenotypes. To address these limitations, we developed multi-target CRISPR, a Cas9-based tool to controllably induce DSBs in high-throughput at endogenous sites, by leveraging repetitive genomic regions. In this Chapter, we describe how to design and execute a multi-target CRISPR experiment. We also detail how to analyze next-generation sequencing data for characterization of DSB repair events at multiple cut sites. We envision that multi-target CRISPR will become a valuable tool for the study of mammalian DSB repair mechanisms.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"712 ","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143692807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2025-01-01Epub Date: 2025-03-06DOI: 10.1016/bs.mie.2025.01.004
Grace N Hibshman, David W Taylor
{"title":"Visualizing the conformational landscape of CRISPR-Cas9 through kinetics-informed structural studies.","authors":"Grace N Hibshman, David W Taylor","doi":"10.1016/bs.mie.2025.01.004","DOIUrl":"10.1016/bs.mie.2025.01.004","url":null,"abstract":"<p><p>CRISPR-Cas9 has transformed genome editing through its programmability and versatility. Its DNA cleavage activity involves dynamic conformational changes during gRNA binding, DNA recognition, R-loop formation, and endonuclease activation. Understanding these molecular transitions is critical for improving the specificity and efficiency of Cas9, but this remains challenging precisely due to these rapid structural rearrangements. Early structural studies provided foundational insights but were limited to static states under catalytically inactive conditions. Cryo-EM has since enabled visualization of the dynamic nature of active Cas9, by enriching for specific conformations. This chapter introduces a kinetics-informed cryo-EM approach to capture the stepwise activation of Cas9 in real time. With thorough kinetic analyses, such as stopped-flow measurements of R-loop formation, we describe how to identify optimal timepoints to visualize key conformational states with cryo-EM. Integration of kinetic and structural data enables precise mapping of the conformational landscape of Cas9 and other dynamic enzymes, advancing our understanding of their molecular mechanisms and providing a framework for engineering enhanced variants.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"712 ","pages":"41-53"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143692837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2025-01-01Epub Date: 2025-02-09DOI: 10.1016/bs.mie.2025.01.015
Anqi Zhao, Michelle M Chan
{"title":"Cloning and validating systems for high throughput molecular recording.","authors":"Anqi Zhao, Michelle M Chan","doi":"10.1016/bs.mie.2025.01.015","DOIUrl":"10.1016/bs.mie.2025.01.015","url":null,"abstract":"<p><p>Molecular recording technologies record and store information about cellular history. Lineage tracing is one form of molecular recording and produces information describing cellular trajectories during mammalian development, differentiation and maintenance of adult stem cell niches, and tumor evolution. Our molecular recorder technology utilizes CRISPR-Cas9 barcode editing to generate mutations in genomically integrated, engineered DNA cassettes, which are read out by single-cell RNA sequencing and used to produce high-resolution lineage trees. Here, we describe optimized cloning and validation procedures to construct the molecular recorder lineage tracing system. We include information on considerations of technology design, cloning procedures, the generation of lineage tracing cell lines, and time course experiments to assess their performance.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"712 ","pages":"453-473"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143692757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2025-01-01Epub Date: 2025-03-12DOI: 10.1016/bs.mie.2025.01.013
Beyzanur Celebi, Janina Lawniczek, David Angelo V Guanzon, Anna Christina R Ngo
{"title":"Design of fusion proteins for biocatalysis.","authors":"Beyzanur Celebi, Janina Lawniczek, David Angelo V Guanzon, Anna Christina R Ngo","doi":"10.1016/bs.mie.2025.01.013","DOIUrl":"https://doi.org/10.1016/bs.mie.2025.01.013","url":null,"abstract":"<p><p>The use of enzymes to convert substrates into valuable products has been an integral part of biocatalysis. However, some reactions are energy-demanding that requires the use of NAD(P)H to proceed. This NAD(P)H can be costly impeding the progress of enzyme usage at a bigger scale. The rise of sophisticated cloning methods has allowed the possibility of constructing multi-enzyme complexes such as coupling NAD(P)H-requiring enzymes with NADH-regeneration systems such as formate dehydrogenases. This allows a more-efficient way to recycle co-factors or co-substrates with cheaper sacrificial substrate such as formate for formate dehydrogenases or glucose for glucose dehydrogenases. However, the design of fusion proteins requires careful attention especially on the peptide linker that will be used to connect two protein domains. The length and the property of the linker and even the orientation of the genes encoding for the proteins in the open reading frame can significantly affect the outcome of the fusion protein. In this chapter, we present a step-by-step procedure for the design of a fusion protein construct via Gibson assembly and how to design linker libraries from one construct using site-directed mutagenesis.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"714 ","pages":"393-406"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143972168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2025-01-01Epub Date: 2025-01-30DOI: 10.1016/bs.mie.2025.01.027
Deborah M Boes, Rob A Schmitz, Peter-Leon Hagedoorn
{"title":"Tungsten containing aldehyde oxidoreductase (AOR)-family enzymes; past, present and future production strategies.","authors":"Deborah M Boes, Rob A Schmitz, Peter-Leon Hagedoorn","doi":"10.1016/bs.mie.2025.01.027","DOIUrl":"https://doi.org/10.1016/bs.mie.2025.01.027","url":null,"abstract":"<p><p>The transition metals tungsten and molybdenum are the heaviest metals found in biological systems and are embedded in the cofactor of several metalloenzymes. As a result of their redox activity, they provide great catalytic power in these enzymes and facilitate chemical reactions that would not occur using only the functionalities of natural amino acids. For their functionality these enzymes depend on a metal cofactor, which consists of at least one metal binding pterin (MPT) and a tungsten or molybdenum ion, but the complete make-up of the cofactor differs per enzyme group. One of these enzyme groups comprises the AOR-family enzymes. These enzymes have the ability to oxidize a range of aldehyde substrates into their corresponding carboxylic acid products. Next to this, they are also the only known catalysts able to perform the thermodynamically challenging reduction reaction of carboxylic acids to aldehydes. These enzymes are currently obtained by purification from the hyperthermophilic archaeon Pyrococcus furiosus. This process, however, does not yield a large amount of enzyme, since it is naturally expressed at moderate levels. For that reason, other production methods need to be considered if the enzyme is to be used on a large scale. These alternatives include the use of a recombinant expression system. The recombinant expression of W-dependent enzymes in different host organisms, such as Escherichia coli, has already been attempted for different enzymes, but with varying success. This shows that more research on the production, and especially incorporation of the metal cofactor, is necessary to achieve a successful production and use of recombinant AOR-family enzymes.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"714 ","pages":"313-336"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143972172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2025-01-01Epub Date: 2025-04-02DOI: 10.1016/bs.mie.2024.11.039
Min Hao, Tao Liu
{"title":"Programmable C-to-U editing to track endogenous proteins.","authors":"Min Hao, Tao Liu","doi":"10.1016/bs.mie.2024.11.039","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.11.039","url":null,"abstract":"<p><p>Protein labeling techniques provide robust tools for studying protein localization, structure, and function. Nonetheless, the challenge persists in labeling endogenous proteins within live cells under their native conditions. Here, we present a universal approach by combining programmable cytidine to uridine (C-to-U) RNA editing with non-canonical amino acids (ncAAs) to achieve site-specific labeling of a diverse array of endogenous proteins using minimal amino acid side-chain tags in living cells. This innovative system, termed RNA Editing mediated ncAAs Protein Tagging (RENAPT), allows for real-time tracking of endogenous proteins by integrating ncAAs into target proteins at specific sites. RENAPT thus emerges as a promising platform with broad applicability for tagging endogenous proteins in live cells, facilitating investigations into their localization and functions.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"713 ","pages":"299-310"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144001843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2025-01-01Epub Date: 2025-02-06DOI: 10.1016/bs.mie.2025.01.008
Alejandro Beltran-Nogal, Ivan Mateljak, David Gonzalez-Perez, Miguel Alcalde
{"title":"Engineering unspecific peroxygenases by structure-guided in vivo recombination of homologous protein blocks.","authors":"Alejandro Beltran-Nogal, Ivan Mateljak, David Gonzalez-Perez, Miguel Alcalde","doi":"10.1016/bs.mie.2025.01.008","DOIUrl":"https://doi.org/10.1016/bs.mie.2025.01.008","url":null,"abstract":"<p><p>Fungal unspecific peroxygenases (UPOs) are highly versatile enzymes for C-H oxyfunctionalization reactions. Over the years, they have been subjected to directed evolution campaigns in order to improve heterologous functional expression, activity, stability and selectivity. While the number of UPO genes available for protein engineering is steadily increasing, their use in enzyme chimeragenesis experiments has been little explored. In this chapter we describe how to construct functionally diverse UPO chimeras from different orthologs by applying the SCHEMA-RASPP computational algorithm in combination with in vivo DNA shuffling.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"714 ","pages":"407-423"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144007839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2025-01-01Epub Date: 2024-12-04DOI: 10.1016/bs.mie.2024.11.029
Alexandria L Quillin, Benoît Arnould, Steve D Knutson, Tatiana F Flores, Jennifer M Heemstra
{"title":"EndoVIA for quantifying A-to-I editing and mapping the subcellular localization of edited transcripts.","authors":"Alexandria L Quillin, Benoît Arnould, Steve D Knutson, Tatiana F Flores, Jennifer M Heemstra","doi":"10.1016/bs.mie.2024.11.029","DOIUrl":"10.1016/bs.mie.2024.11.029","url":null,"abstract":"<p><p>Adenosine-to-inosine (A-to-I) editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a prevalent post-transcriptional modification that is vital for numerous biological functions. Given that this modification impacts global gene expression, RNA localization, and innate cellular immunity, dysregulation of A-to-I editing has unsurprisingly been linked to a variety of cancers and other diseases. However, our current understanding of the underpinning mechanisms that connect dysregulated A-to-I editing and disease processes remains limited. Widely used methods require RNA extraction and pooling that ultimately erases subcellular localization and cell-to-cell variation, which may be critical to understanding misregulation. To overcome these challenges, we recently developed Endonuclease V Immunostaining Assay (EndoVIA) to selectively detect and visualize A-to-I edited RNA in situ. In this chapter, we describe in detail how to prepare cell samples, stain A-to-I edited transcripts with EndoVIA, quantify global inosine abundance, and visualize the subcellular localization of inosine-containing RNAs at the single molecule level.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"710 ","pages":"99-130"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}