Measuring double-strand break repair events in mammalian cells with multi-target CRISPR.

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-02-07 DOI:10.1016/bs.mie.2025.01.011
Alberto Marin-Gonzalez, Adam T Rybczynski, Roger S Zou, Taekjip Ha
{"title":"Measuring double-strand break repair events in mammalian cells with multi-target CRISPR.","authors":"Alberto Marin-Gonzalez, Adam T Rybczynski, Roger S Zou, Taekjip Ha","doi":"10.1016/bs.mie.2025.01.011","DOIUrl":null,"url":null,"abstract":"<p><p>A mechanistic understanding of the different pathways involved in the repair of DSBs is a timely, yet challenging task. CRISPR-Cas9 is a powerful tool to induce DNA double-strand breaks (DSB) at defined genomic locations to study the ensuing repair response, but Cas9 studies are typically limited by i) low-throughput induction of DSB, by targeting only one or a few genomic sites, or ii) the use of genetically integrated reporter systems, which do not always reflect endogenous phenotypes. To address these limitations, we developed multi-target CRISPR, a Cas9-based tool to controllably induce DSBs in high-throughput at endogenous sites, by leveraging repetitive genomic regions. In this Chapter, we describe how to design and execute a multi-target CRISPR experiment. We also detail how to analyze next-generation sequencing data for characterization of DSB repair events at multiple cut sites. We envision that multi-target CRISPR will become a valuable tool for the study of mammalian DSB repair mechanisms.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"712 ","pages":"1-22"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.01.011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

A mechanistic understanding of the different pathways involved in the repair of DSBs is a timely, yet challenging task. CRISPR-Cas9 is a powerful tool to induce DNA double-strand breaks (DSB) at defined genomic locations to study the ensuing repair response, but Cas9 studies are typically limited by i) low-throughput induction of DSB, by targeting only one or a few genomic sites, or ii) the use of genetically integrated reporter systems, which do not always reflect endogenous phenotypes. To address these limitations, we developed multi-target CRISPR, a Cas9-based tool to controllably induce DSBs in high-throughput at endogenous sites, by leveraging repetitive genomic regions. In this Chapter, we describe how to design and execute a multi-target CRISPR experiment. We also detail how to analyze next-generation sequencing data for characterization of DSB repair events at multiple cut sites. We envision that multi-target CRISPR will become a valuable tool for the study of mammalian DSB repair mechanisms.

用多靶点CRISPR测量哺乳动物细胞中的双链断裂修复事件。
对涉及dsb修复的不同途径的机制理解是一项及时但具有挑战性的任务。CRISPR-Cas9是在特定基因组位置诱导DNA双链断裂(DSB)以研究随后的修复反应的强大工具,但Cas9研究通常受到以下限制:1)DSB的低通量诱导,仅靶向一个或几个基因组位点,或ii)使用遗传整合报告系统,这并不总是反映内源性表型。为了解决这些限制,我们开发了多靶点CRISPR,这是一种基于cas9的工具,通过利用重复的基因组区域,在内源性位点上高通量地可控地诱导dsb。在本章中,我们描述了如何设计和执行一个多靶点CRISPR实验。我们还详细介绍了如何分析下一代测序数据,以表征多个切割位点的DSB修复事件。我们设想,多靶点CRISPR将成为研究哺乳动物DSB修复机制的宝贵工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信