将RODEO与基因组酶学工作流程合并,以指导RiPP的发现。

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-02-16 DOI:10.1016/bs.mie.2025.01.057
Graham A Hudson, Sangeetha Ramesh
{"title":"将RODEO与基因组酶学工作流程合并,以指导RiPP的发现。","authors":"Graham A Hudson, Sangeetha Ramesh","doi":"10.1016/bs.mie.2025.01.057","DOIUrl":null,"url":null,"abstract":"<p><p>Natural products (NPs) have played a pivotal role in medicine, providing treatments that have saved or enhanced an incalculable number of lives. Traditionally, NPs were discovered using microbial extracts in conjunction with the bioactivity/phenotype-driven \"grind and find\" methodology. While initially fruitful during the \"golden age\" of NP discovery, it was quickly realized this method is fraught with drawbacks; namely, rediscovery of known/widely distributed secondary metabolites. Bioinformatics-guided discovery of novel NPs is a promising approach to obviate these drawbacks. Ribosomally synthesized and post-translationally modified peptide (RiPP) NPs are uniquely suited for a bioinformatics-driven strategy since RiPPs are biosynthesized from a ribosomally-encoded precursor peptide that is collocated with tailoring enzymes in biosynthetic gene clusters. This chapter details how the bioinformatics tool Rapid ORF Description and Evaluation Online (RODEO) can be united with genomic enzymology workflows to rapidly expand knowledge of RiPP NPs and details several case studies of how RODEO was used to explore a known class of RiPP, identify the origins of a novel post-translational modification, and discover the founding members of a new class of RiPP. While RODEO and the methods detailed herein are focused on RiPP NPs, they are largely translatable to other NP classes, and we anticipate these methods can be broadly useful to researchers in NP discovery.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"717 ","pages":"29-65"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Merging RODEO with genomic enzymology workflows to guide RiPP discovery.\",\"authors\":\"Graham A Hudson, Sangeetha Ramesh\",\"doi\":\"10.1016/bs.mie.2025.01.057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural products (NPs) have played a pivotal role in medicine, providing treatments that have saved or enhanced an incalculable number of lives. Traditionally, NPs were discovered using microbial extracts in conjunction with the bioactivity/phenotype-driven \\\"grind and find\\\" methodology. While initially fruitful during the \\\"golden age\\\" of NP discovery, it was quickly realized this method is fraught with drawbacks; namely, rediscovery of known/widely distributed secondary metabolites. Bioinformatics-guided discovery of novel NPs is a promising approach to obviate these drawbacks. Ribosomally synthesized and post-translationally modified peptide (RiPP) NPs are uniquely suited for a bioinformatics-driven strategy since RiPPs are biosynthesized from a ribosomally-encoded precursor peptide that is collocated with tailoring enzymes in biosynthetic gene clusters. This chapter details how the bioinformatics tool Rapid ORF Description and Evaluation Online (RODEO) can be united with genomic enzymology workflows to rapidly expand knowledge of RiPP NPs and details several case studies of how RODEO was used to explore a known class of RiPP, identify the origins of a novel post-translational modification, and discover the founding members of a new class of RiPP. While RODEO and the methods detailed herein are focused on RiPP NPs, they are largely translatable to other NP classes, and we anticipate these methods can be broadly useful to researchers in NP discovery.</p>\",\"PeriodicalId\":18662,\"journal\":{\"name\":\"Methods in enzymology\",\"volume\":\"717 \",\"pages\":\"29-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in enzymology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mie.2025.01.057\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.01.057","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

天然产物(NPs)在医学中发挥了关键作用,提供了挽救或改善无数生命的治疗方法。传统上,NPs是使用微生物提取物与生物活性/表型驱动的“研磨和发现”方法相结合发现的。虽然在NP发现的“黄金时代”最初取得了成果,但人们很快意识到这种方法充满了缺点;即重新发现已知的/广泛分布的次生代谢物。在生物信息学指导下发现新的NPs是消除这些缺陷的一种很有前途的方法。核糖体合成和翻译后修饰肽(RiPP) NPs特别适合生物信息学驱动的策略,因为RiPP是由核糖体编码的前体肽与生物合成基因簇中的剪裁酶搭配而成的。本章详细介绍了生物信息学工具快速ORF描述和评估在线(RODEO)如何与基因组酶学工作流程相结合,以快速扩展RiPP NPs的知识,并详细介绍了如何使用RODEO来探索已知的RiPP类别,确定新的翻译后修饰的起源,并发现新一类RiPP的创始成员。虽然RODEO和本文详细介绍的方法主要集中在RiPP NP上,但它们在很大程度上可翻译为其他NP类,我们预计这些方法对NP发现的研究人员可以广泛使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Merging RODEO with genomic enzymology workflows to guide RiPP discovery.

Natural products (NPs) have played a pivotal role in medicine, providing treatments that have saved or enhanced an incalculable number of lives. Traditionally, NPs were discovered using microbial extracts in conjunction with the bioactivity/phenotype-driven "grind and find" methodology. While initially fruitful during the "golden age" of NP discovery, it was quickly realized this method is fraught with drawbacks; namely, rediscovery of known/widely distributed secondary metabolites. Bioinformatics-guided discovery of novel NPs is a promising approach to obviate these drawbacks. Ribosomally synthesized and post-translationally modified peptide (RiPP) NPs are uniquely suited for a bioinformatics-driven strategy since RiPPs are biosynthesized from a ribosomally-encoded precursor peptide that is collocated with tailoring enzymes in biosynthetic gene clusters. This chapter details how the bioinformatics tool Rapid ORF Description and Evaluation Online (RODEO) can be united with genomic enzymology workflows to rapidly expand knowledge of RiPP NPs and details several case studies of how RODEO was used to explore a known class of RiPP, identify the origins of a novel post-translational modification, and discover the founding members of a new class of RiPP. While RODEO and the methods detailed herein are focused on RiPP NPs, they are largely translatable to other NP classes, and we anticipate these methods can be broadly useful to researchers in NP discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信