Feruloyl-CoA synthetases and feruloyl-CoA hydratase/lyases: Expression, biochemical characterisation, and generation of vanillin from ferulic acid and lignocellulosic hydrolysates.
4区 生物学Q3 Biochemistry, Genetics and Molecular Biology
{"title":"Feruloyl-CoA synthetases and feruloyl-CoA hydratase/lyases: Expression, biochemical characterisation, and generation of vanillin from ferulic acid and lignocellulosic hydrolysates.","authors":"Victoria Sodré, Fabio Marcio Squina","doi":"10.1016/bs.mie.2025.01.046","DOIUrl":null,"url":null,"abstract":"<p><p>Vanillin (4-hydroxy-3-methoxybenzaldehyde) is a valuable aroma and flavour compound with diverse applications in the food, fragrance, and pharmaceutical industries. Currently, the majority of vanillin produced globally is chemically synthesised from fossil-derived resources, but biocatalytic production from plant biomass offers a sustainable alternative. Alkaline pretreatment of grass-derived biomass releases ferulic acid, which can be converted into vanillin through a two-step biotransformation catalysed by feruloyl-CoA synthetases (FCSs) and feruloyl-CoA hydratase/lyases (FCHLs). This article presents detailed methodologies for the expression, purification, and biochemical characterisation of FCSs and FCHLs sourced from a lignin-degrading microbial consortium. Additionally, it describes protocols for preparing alkaline pretreatment hydrolysates from sugarcane bagasse and implementing the coupled FCS/FCHL reaction for vanillin synthesis. Analytical techniques for monitoring substrates and products are also discussed. These methods aim to support researchers in advancing the biocatalytic production of vanillin from renewable plant biomass.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"716 ","pages":"341-359"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.01.046","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Vanillin (4-hydroxy-3-methoxybenzaldehyde) is a valuable aroma and flavour compound with diverse applications in the food, fragrance, and pharmaceutical industries. Currently, the majority of vanillin produced globally is chemically synthesised from fossil-derived resources, but biocatalytic production from plant biomass offers a sustainable alternative. Alkaline pretreatment of grass-derived biomass releases ferulic acid, which can be converted into vanillin through a two-step biotransformation catalysed by feruloyl-CoA synthetases (FCSs) and feruloyl-CoA hydratase/lyases (FCHLs). This article presents detailed methodologies for the expression, purification, and biochemical characterisation of FCSs and FCHLs sourced from a lignin-degrading microbial consortium. Additionally, it describes protocols for preparing alkaline pretreatment hydrolysates from sugarcane bagasse and implementing the coupled FCS/FCHL reaction for vanillin synthesis. Analytical techniques for monitoring substrates and products are also discussed. These methods aim to support researchers in advancing the biocatalytic production of vanillin from renewable plant biomass.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.