Alberto Marin-Gonzalez, Adam T Rybczynski, Roger S Zou, Taekjip Ha
{"title":"用多靶点CRISPR测量哺乳动物细胞中的双链断裂修复事件。","authors":"Alberto Marin-Gonzalez, Adam T Rybczynski, Roger S Zou, Taekjip Ha","doi":"10.1016/bs.mie.2025.01.011","DOIUrl":null,"url":null,"abstract":"<p><p>A mechanistic understanding of the different pathways involved in the repair of DSBs is a timely, yet challenging task. CRISPR-Cas9 is a powerful tool to induce DNA double-strand breaks (DSB) at defined genomic locations to study the ensuing repair response, but Cas9 studies are typically limited by i) low-throughput induction of DSB, by targeting only one or a few genomic sites, or ii) the use of genetically integrated reporter systems, which do not always reflect endogenous phenotypes. To address these limitations, we developed multi-target CRISPR, a Cas9-based tool to controllably induce DSBs in high-throughput at endogenous sites, by leveraging repetitive genomic regions. In this Chapter, we describe how to design and execute a multi-target CRISPR experiment. We also detail how to analyze next-generation sequencing data for characterization of DSB repair events at multiple cut sites. We envision that multi-target CRISPR will become a valuable tool for the study of mammalian DSB repair mechanisms.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"712 ","pages":"1-22"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring double-strand break repair events in mammalian cells with multi-target CRISPR.\",\"authors\":\"Alberto Marin-Gonzalez, Adam T Rybczynski, Roger S Zou, Taekjip Ha\",\"doi\":\"10.1016/bs.mie.2025.01.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A mechanistic understanding of the different pathways involved in the repair of DSBs is a timely, yet challenging task. CRISPR-Cas9 is a powerful tool to induce DNA double-strand breaks (DSB) at defined genomic locations to study the ensuing repair response, but Cas9 studies are typically limited by i) low-throughput induction of DSB, by targeting only one or a few genomic sites, or ii) the use of genetically integrated reporter systems, which do not always reflect endogenous phenotypes. To address these limitations, we developed multi-target CRISPR, a Cas9-based tool to controllably induce DSBs in high-throughput at endogenous sites, by leveraging repetitive genomic regions. In this Chapter, we describe how to design and execute a multi-target CRISPR experiment. We also detail how to analyze next-generation sequencing data for characterization of DSB repair events at multiple cut sites. We envision that multi-target CRISPR will become a valuable tool for the study of mammalian DSB repair mechanisms.</p>\",\"PeriodicalId\":18662,\"journal\":{\"name\":\"Methods in enzymology\",\"volume\":\"712 \",\"pages\":\"1-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in enzymology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mie.2025.01.011\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.01.011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Measuring double-strand break repair events in mammalian cells with multi-target CRISPR.
A mechanistic understanding of the different pathways involved in the repair of DSBs is a timely, yet challenging task. CRISPR-Cas9 is a powerful tool to induce DNA double-strand breaks (DSB) at defined genomic locations to study the ensuing repair response, but Cas9 studies are typically limited by i) low-throughput induction of DSB, by targeting only one or a few genomic sites, or ii) the use of genetically integrated reporter systems, which do not always reflect endogenous phenotypes. To address these limitations, we developed multi-target CRISPR, a Cas9-based tool to controllably induce DSBs in high-throughput at endogenous sites, by leveraging repetitive genomic regions. In this Chapter, we describe how to design and execute a multi-target CRISPR experiment. We also detail how to analyze next-generation sequencing data for characterization of DSB repair events at multiple cut sites. We envision that multi-target CRISPR will become a valuable tool for the study of mammalian DSB repair mechanisms.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.