A general framework to analyze potential roles of tDRs in mammalian protein synthesis.

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2024-12-05 DOI:10.1016/bs.mie.2024.11.018
Nupur Bhatter, Pavel Ivanov
{"title":"A general framework to analyze potential roles of tDRs in mammalian protein synthesis.","authors":"Nupur Bhatter, Pavel Ivanov","doi":"10.1016/bs.mie.2024.11.018","DOIUrl":null,"url":null,"abstract":"<p><p>tRNA-derived RNAs (tDRs) are a heterogeneous class of small non-coding RNAs that have been implicated in numerous biological processes including the regulation of mRNA translation. A subclass of tDRs called tRNA-derived stress-induced RNAs (tiRNAs) have been shown to participate in translational control under stress where specific tiRNAs repress protein synthesis. Here, we use a prototypical tiRNA (5'-tiRNA<sup>Ala</sup>) that inhibits mRNA translation in vitro and in cells as a model to study potential roles of tDRs in translational control. Specifically, we propose to use commercially available and custom-made in vitro translation systems together with sensitive luciferase-based mRNA reporters as well as transfection studies to determine potential effects of a given tDR on various aspects of protein synthesis. We overview methods to probe the capacity of specific tDRs to target specific steps of mRNA translation initiation, the most regulated step in translational control. Using 5'-tiRNA<sup>Ala</sup> as an example, we analyze its effects on the integrity of the m<sup>7</sup>GTP (cap)-bound eIF4F complex and phosphorylation of eIF2α, the key regulatory molecule of the Integrated Stress Response. Using transfection studies, we also monitor whether tDRs can promote formation of stress granules (SGs), RNA granules are often formed in response to global translation repression in live cells. This simple workflow offers fast, scalable, and reliable analyses of a potential involvement of specific tDRs in the modulation of protein synthesis and provides initial hints on molecular mechanisms that underline such mRNA translation regulation.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"711 ","pages":"29-46"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.11.018","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

tRNA-derived RNAs (tDRs) are a heterogeneous class of small non-coding RNAs that have been implicated in numerous biological processes including the regulation of mRNA translation. A subclass of tDRs called tRNA-derived stress-induced RNAs (tiRNAs) have been shown to participate in translational control under stress where specific tiRNAs repress protein synthesis. Here, we use a prototypical tiRNA (5'-tiRNAAla) that inhibits mRNA translation in vitro and in cells as a model to study potential roles of tDRs in translational control. Specifically, we propose to use commercially available and custom-made in vitro translation systems together with sensitive luciferase-based mRNA reporters as well as transfection studies to determine potential effects of a given tDR on various aspects of protein synthesis. We overview methods to probe the capacity of specific tDRs to target specific steps of mRNA translation initiation, the most regulated step in translational control. Using 5'-tiRNAAla as an example, we analyze its effects on the integrity of the m7GTP (cap)-bound eIF4F complex and phosphorylation of eIF2α, the key regulatory molecule of the Integrated Stress Response. Using transfection studies, we also monitor whether tDRs can promote formation of stress granules (SGs), RNA granules are often formed in response to global translation repression in live cells. This simple workflow offers fast, scalable, and reliable analyses of a potential involvement of specific tDRs in the modulation of protein synthesis and provides initial hints on molecular mechanisms that underline such mRNA translation regulation.

分析tDRs在哺乳动物蛋白质合成中的潜在作用的一般框架。
tRNA-derived RNAs (tDRs)是一类异质的小非编码RNAs,涉及许多生物过程,包括mRNA翻译的调节。一种被称为trna衍生的应激诱导rna (tiRNAs)的tdr亚类已被证明参与应激下的翻译控制,其中特定的tiRNAs抑制蛋白质合成。在这里,我们使用体外和细胞中抑制mRNA翻译的原型tiRNA (5'-tiRNAAla)作为模型来研究tDRs在翻译控制中的潜在作用。具体来说,我们建议使用商业上可用的和定制的体外翻译系统,以及敏感的基于荧光素酶的mRNA报告器和转染研究,以确定给定tDR对蛋白质合成各个方面的潜在影响。我们概述了探索特定tdr靶向mRNA翻译起始(翻译控制中最受调节的步骤)特定步骤的能力的方法。以5'-tiRNAAla为例,我们分析了其对m7GTP (cap)结合的eIF4F复合物完整性和eIF2α磷酸化的影响,eIF2α是综合应激反应的关键调控分子。通过转染研究,我们还监测了tDRs是否可以促进应激颗粒(SGs)的形成,RNA颗粒通常是在活细胞中响应全局翻译抑制而形成的。这个简单的工作流程提供了快速、可扩展和可靠的分析,分析特定tdr在蛋白质合成调节中的潜在参与,并提供了强调这种mRNA翻译调节的分子机制的初步提示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信