Journal of Bone and Mineral Research最新文献

筛选
英文 中文
The effect of calcium supplementation on bone calcium balance and calcium and bone metabolism during load carriage in women: a randomised controlled crossover trial. 补钙对女性负重期间骨钙平衡和钙骨代谢的影响:一项随机对照交叉试验。
IF 5.1 1区 医学
Journal of Bone and Mineral Research Pub Date : 2025-01-13 DOI: 10.1093/jbmr/zjaf004
Charlotte V Coombs, Julie P Greeves, Christina D Young, Alice S Irving, Anton Eisenhauer, Ana Kolevica, Alexander Heuser, Jonathan C Y Tang, William D Fraser, Thomas J O'Leary
{"title":"The effect of calcium supplementation on bone calcium balance and calcium and bone metabolism during load carriage in women: a randomised controlled crossover trial.","authors":"Charlotte V Coombs, Julie P Greeves, Christina D Young, Alice S Irving, Anton Eisenhauer, Ana Kolevica, Alexander Heuser, Jonathan C Y Tang, William D Fraser, Thomas J O'Leary","doi":"10.1093/jbmr/zjaf004","DOIUrl":"https://doi.org/10.1093/jbmr/zjaf004","url":null,"abstract":"<p><p>Calcium supplementation before exercise attenuates the decrease in serum calcium and increase in PTH and bone resorption. This study investigated the effect of calcium supplementation on calcium and bone metabolism during load carriage in women. Forty-eight women completed two load carriage sessions (load carriage 1 n = 48; load carriage 2 n = 40) (12.8 km in 120 min carrying 20 kg) 60 min after consuming either 1000 mg calcium (Calcium) or nothing (Control) in a randomised order. Pre- and post-exercise urine samples were analysed for calcium isotope ratio (δ44/42Ca). Fasted blood samples were taken before (pre-exercise), during (0, 20, 40, 60, 80, 100, 120 min), and after (+15, +30, +60, +90 min) exercise and analysed for markers of calcium and bone metabolism. There was no effect of load carriage or supplementation on urine δ44/42Ca (P≥.110). Serum δ44/42Ca did not change with load carriage in Control (P=.617) but increased in Calcium (P=.003) and was higher at 120 min in Calcium vs Control (P=.018). Ionised calcium (iCa) decreased from pre-exercise to all exercise time-points (P<.001); iCa was higher in Calcium than Control throughout (P<.001). PTH increased from pre-exercise to 120 min in Control (P<.001) but decreased from pre-exercise to all time-points in Calcium (P<.001). PTH was higher in Control than Calcium from 0 to +90 min (P<.001). βCTX decreased from pre-exercise to 20 to +15 min in Control (P≤.004); βCTX decreased from pre-exercise to 0 to +90 min in Calcium (P<.001). βCTX was lower in Calcium than Control from 20 to +90 min (P≤.036). A 1000 mg calcium supplement before load carriage promotes bone calcium balance and prevents disruptions to bone and calcium homeostasis.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preclinical evaluation of the efficacy and safety of AAV8-TNAP-D10 in Alpl-/- and AlplPrx1/Prx1 mouse models for the treatment of early and late-onset hypophosphatasia. 临床前评价AAV8-TNAP-D10在Alpl-/-和AlplPrx1/Prx1小鼠模型中治疗早、晚发型低磷酸症的疗效和安全性。
IF 5.1 1区 医学
Journal of Bone and Mineral Research Pub Date : 2025-01-12 DOI: 10.1093/jbmr/zjaf005
Flavia Amadeu de Oliveira, Cintia Kazuko Tokuhara, Fatma F Mohamed, Sonoko Narisawa, Elis J Lira Dos Santos, Natalie L Andras, Mohammad Shadid, Koichi Miyake, Brian L Foster, José Luis Millán
{"title":"Preclinical evaluation of the efficacy and safety of AAV8-TNAP-D10 in Alpl-/- and AlplPrx1/Prx1 mouse models for the treatment of early and late-onset hypophosphatasia.","authors":"Flavia Amadeu de Oliveira, Cintia Kazuko Tokuhara, Fatma F Mohamed, Sonoko Narisawa, Elis J Lira Dos Santos, Natalie L Andras, Mohammad Shadid, Koichi Miyake, Brian L Foster, José Luis Millán","doi":"10.1093/jbmr/zjaf005","DOIUrl":"10.1093/jbmr/zjaf005","url":null,"abstract":"<p><p>We previously documented successful resolution of skeletal and dental disease in the infantile and late-onset murine models of hypophosphatasia (HPP), with a single injection of an adeno-associated serotype 8 vector encoding mineral-targeted TNAP (AAV8-TNAP-D10). Here, we conducted dosing studies in both HPP mouse models. A single escalating dose from 4x108 up to 4x1010 (vg/b) was intramuscularly injected into 4-day-old Alpl-/- mice (an infantile HPP model) and a single dose from 4x106 up to 4x109 (vg/b) was administered to 8-week-old AlplPrx1/Prx1 mice (a late-onset HPP model). Wild-type littermates were used as controls. Serum alkaline phosphatase activity was increased, and PPi levels were decreased in a dose-dependent manner in both the Alpl-/- and AlplPrx1/Prx1 models. Radiographic and μCT analysis of long bones of female and male Alpl-/- mice showed full correction of skeletal phenotype at 4x1010 vg/b. We observed full correction of the bone phenotype at 4x108 and 4x109 in female AlplPrx1/Prx1 mice, but bones remained hypomineralized with the 4x106 and 4x107 (vg/b) doses after 70 days of treatment. We observed skeletal improvements using the 4x109 (vg/b) dose, but the phenotype was not fully corrected in male AlplPrx1/Prx1. Immunohistochemistry using anti-TNAP and anti-D10 antibodies showed high immunolocalization in the femurs of female AlplPrx1/Prx1 mice, while D10 immunolocalization was high in the liver of male AlplPrx1/Prx1 mice at a dose of 4x109 (vg/b). This sex-dependent difference was not seen in the infantile HPP model. A serum proteome analysis showed enhanced inflammatory pathways in treated AlplPrx1/Prx1 males compared to treated female mice. We also found a few areas of ectopic calcification in soft organs at the highest tested dose of 4x1010 (vg/b) in Alpl-/- or 4x109 (vg/b) in the AlplPrx1/Prx1 model. This pre-clinical study will inform the design of clinical trials to develop gene therapy in early-onset and late-onset HPP patients.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thrombopoietic agents enhance bone healing in mice, rats, and pigs. 血小板生成剂可促进小鼠、大鼠和猪的骨愈合。
IF 5.1 1区 医学
Journal of Bone and Mineral Research Pub Date : 2024-12-31 DOI: 10.1093/jbmr/zjae191
Paul J Childress, Jeffery J Nielsen, Thomas B Bemenderfer, Ushashi C Dadwal, Nabarun Chakraborty, Jonathan S Harris, Monique Bethel, Marta B Alvarez, Aamir Tucker, Alexander R Wessel, Patrick D Millikan, Jonathan H Wilhite, Andrew Engle, Alexander Brinker, Jeffrey D Rytlewski, David C Scofield, Kaitlyn S Griffin, W Christopher Shelley, Kelli J Manikowski, Krista L Jackson, Stacy-Ann Miller, Ying-Hua Cheng, Joydeep Ghosh, Patrick L Mulcrone, Edward F Srour, Mervin C Yoder, Roman M Natoli, Karl D Shively, Aarti Gautam, Rasha Hammamieh, Stewart A Low, Philip S Low, Todd O McKinley, Jeffrey O Anglen, Jonathan W Lowery, Tien-Min G Chu, Melissa A Kacena
{"title":"Thrombopoietic agents enhance bone healing in mice, rats, and pigs.","authors":"Paul J Childress, Jeffery J Nielsen, Thomas B Bemenderfer, Ushashi C Dadwal, Nabarun Chakraborty, Jonathan S Harris, Monique Bethel, Marta B Alvarez, Aamir Tucker, Alexander R Wessel, Patrick D Millikan, Jonathan H Wilhite, Andrew Engle, Alexander Brinker, Jeffrey D Rytlewski, David C Scofield, Kaitlyn S Griffin, W Christopher Shelley, Kelli J Manikowski, Krista L Jackson, Stacy-Ann Miller, Ying-Hua Cheng, Joydeep Ghosh, Patrick L Mulcrone, Edward F Srour, Mervin C Yoder, Roman M Natoli, Karl D Shively, Aarti Gautam, Rasha Hammamieh, Stewart A Low, Philip S Low, Todd O McKinley, Jeffrey O Anglen, Jonathan W Lowery, Tien-Min G Chu, Melissa A Kacena","doi":"10.1093/jbmr/zjae191","DOIUrl":"10.1093/jbmr/zjae191","url":null,"abstract":"<p><p>Achieving bone union remains a significant clinical dilemma. The use of osteoinductive agents, specifically bone morphogenetic proteins (BMPs), has gained wide attention. However, multiple side effects, including increased incidence of cancer, have renewed interest in investigating alternatives that provide safer, yet effective bone regeneration. Here we demonstrate the robust bone healing capabilities of the main megakaryocyte (MK) growth factor, thrombopoietin (TPO), and second-generation TPO agents using multiple animal models, including mice, rats, and pigs. This bone healing activity is shown in two fracture models (critical-sized defect [CSD] and closed fracture) and with local or systemic administration. Our transcriptomic analyses, cellular studies, and protein arrays demonstrate that TPO enhances multiple cellular processes important to fracture healing, particularly angiogenesis, which is required for bone union. Finally, the therapeutic potential of thrombopoietic agents is high since they are used in the clinic for other indications (eg, thrombocytopenia) with established safety profiles and act upon a narrowly defined population of cells.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"125-139"},"PeriodicalIF":5.1,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-duration type 1 diabetes is associated with deficient cortical bone mechanical behavior and altered matrix composition in human femoral bone. 长期1型糖尿病与人体股骨皮质骨机械性能缺陷和基质成分改变有关。
IF 5.1 1区 医学
Journal of Bone and Mineral Research Pub Date : 2024-12-31 DOI: 10.1093/jbmr/zjae184
Shannon R Emerzian, Jarred Chow, Ramina Behzad, Mustafa Unal, Daniel J Brooks, I-Hsien Wu, John Gauthier, Surya Vishva Teja Jangolla, Marc Gregory Yu, Hetal S Shah, George L King, Fjola Johannesdottir, Lamya Karim, Elaine W Yu, Mary L Bouxsein
{"title":"Long-duration type 1 diabetes is associated with deficient cortical bone mechanical behavior and altered matrix composition in human femoral bone.","authors":"Shannon R Emerzian, Jarred Chow, Ramina Behzad, Mustafa Unal, Daniel J Brooks, I-Hsien Wu, John Gauthier, Surya Vishva Teja Jangolla, Marc Gregory Yu, Hetal S Shah, George L King, Fjola Johannesdottir, Lamya Karim, Elaine W Yu, Mary L Bouxsein","doi":"10.1093/jbmr/zjae184","DOIUrl":"10.1093/jbmr/zjae184","url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is associated with an increased risk of hip fracture beyond what can be explained by reduced bone mineral density, possibly due to changes in bone material from accumulation of advanced glycation end-products (AGEs) and altered matrix composition, though data from human cortical bone in T1D are limited. The objective of this study was to evaluate cortical bone material behavior in T1D by examining specimens from cadaveric femora from older adults with long-duration T1D (≥50 yr; n = 20) and age- and sex-matched nondiabetic controls (n = 14). Cortical bone was assessed by mechanical testing (4-point bending, cyclic reference point indentation, impact microindentation), AGE quantification [total fluorescent AGEs, pentosidine, carboxymethyl lysine (CML)], and matrix composition via Raman spectroscopy. Cortical bone from older adults with T1D had diminished postyield toughness to fracture (-30%, p = .036), elevated levels of AGEs (pentosidine, +17%, p = .039), lower mineral crystallinity (-1.4%, p = .010), greater proline hydroxylation (+1.9%, p = .009), and reduced glycosaminoglycan (GAG) content (-1.3%, p < .03) compared to nondiabetics. In multiple regression models to predict cortical bone toughness, cortical tissue mineral density, CML, and Raman spectroscopic measures of enzymatic collagen crosslinks and GAG content remained highly significant predictors of toughness, while diabetic status was no longer significant (adjusted R2 > 0.60, p < .001). Thus, the impairment of cortical bone to absorb energy following long-duration T1D is well explained by AGE accumulation and modifications to the bone matrix. These results provide novel insight into the pathogenesis of skeletal fragility in individuals with T1D.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"87-99"},"PeriodicalIF":5.1,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One day at a time: understanding how 24-hr physical activity, sedentary behavior and sleep patterns influence falls and fracture risk. 一天一次:了解 24 小时体育活动、久坐行为和睡眠模式如何影响跌倒和骨折风险。
IF 5.1 1区 医学
Journal of Bone and Mineral Research Pub Date : 2024-12-31 DOI: 10.1093/jbmr/zjae188
Costas Glavas, David Scott
{"title":"One day at a time: understanding how 24-hr physical activity, sedentary behavior and sleep patterns influence falls and fracture risk.","authors":"Costas Glavas, David Scott","doi":"10.1093/jbmr/zjae188","DOIUrl":"10.1093/jbmr/zjae188","url":null,"abstract":"","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1-2"},"PeriodicalIF":5.1,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HR-pQCT reveals marked trabecular and cortical structural deficits in women with pregnancy and lactation-associated osteoporosis (PLO). 妊娠和哺乳期相关性骨质疏松症(PLO)妇女的 HR-pQCT 显示出明显的骨小梁和皮质结构缺陷。
IF 5.1 1区 医学
Journal of Bone and Mineral Research Pub Date : 2024-12-31 DOI: 10.1093/jbmr/zjae167
Sanchita Agarwal, Dany El-Najjar, Ananya Kondapalli, Nayoung Kil, Mafo Kamanda-Kosseh, Mariana Bucovsky, Ivelisse Colon, Joan M Lappe, Julie Stubby, Robert R Recker, X Edward Guo, Elizabeth Shane, Adi Cohen
{"title":"HR-pQCT reveals marked trabecular and cortical structural deficits in women with pregnancy and lactation-associated osteoporosis (PLO).","authors":"Sanchita Agarwal, Dany El-Najjar, Ananya Kondapalli, Nayoung Kil, Mafo Kamanda-Kosseh, Mariana Bucovsky, Ivelisse Colon, Joan M Lappe, Julie Stubby, Robert R Recker, X Edward Guo, Elizabeth Shane, Adi Cohen","doi":"10.1093/jbmr/zjae167","DOIUrl":"10.1093/jbmr/zjae167","url":null,"abstract":"<p><p>Pregnancy and lactation-associated osteoporosis (PLO) is a rare presentation of early-onset osteoporosis characterized by low trauma and spontaneous fractures during late pregnancy/lactation. Herein, we report areal BMD (aBMD) by DXA and volumetric BMD (vBMD), microarchitecture, and strength at the distal radius and tibia by HR-pQCT in 59 women with PLO-in comparison to both healthy premenopausal controls (n = 28) and premenopausal women with idiopathic osteoporotic fractures not associated with pregnancy/lactation (non-PLO IOP; n = 50). Women with PLO (aged 34 ± 6 yr) had a more severe clinical presentation than non-PLO IOP: 80% had vertebral and 92% had multiple fractures (p<.001). They had lower DXA aBMD at all sites vs Controls (all p<.001) and non-PLO IOP (all p<.05). By HR-pQCT, PLO had deficits in all radial/tibial density and most microarchitecture parameters and lower bone strength than controls (all p<.001). Compared to non-PLO IOP, PLO had lower total and trabecular density at radius and tibia (all p ≤ .01) and significant deficits in trabecular microstructure and cortical thickness at the radius only. We studied PLO subgroups with clinical factors potentially related to bone physiology: Within PLO, women with vertebral fractures had lower spine aBMD and higher tibial cortical porosity but were otherwise structurally similar to the nonvertebral group. Those with prior heparin exposure had larger bone size and trabecular area, and those with renal stones had smaller bone size and lower 1/3 radius aBMD. We also compared groups based on postpartum timing: Recent PLO (n = 25) evaluated ≤12 M postpartum, before expected recovery of pregnancy/lactation bone loss, had significantly lower aBMD than distant PLO (n = 34) evaluated >12 M postpartum. However, radial/tibial HR-pQCT measures did not differ, suggesting pre-existing and/or persistent structural deficits. This structural study increases our mechanistic understanding of the severe bone fragility presentation that characterizes PLO and also highlights areas of potential mechanistic heterogeneity that require additional investigation.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"38-49"},"PeriodicalIF":5.1,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new Col1a1 conditional knock-in mouse model to study osteogenesis imperfecta. 研究成骨不全症的新型 Col1a1 条件性基因敲入小鼠模型
IF 5.1 1区 医学
Journal of Bone and Mineral Research Pub Date : 2024-12-31 DOI: 10.1093/jbmr/zjae189
Milena Dimori, Mahtab Toulany, Lira Samia Sultana, Melda Onal, Jeff D Thostenson, John L Carroll, Charles A O'Brien, Roy Morello
{"title":"A new Col1a1 conditional knock-in mouse model to study osteogenesis imperfecta.","authors":"Milena Dimori, Mahtab Toulany, Lira Samia Sultana, Melda Onal, Jeff D Thostenson, John L Carroll, Charles A O'Brien, Roy Morello","doi":"10.1093/jbmr/zjae189","DOIUrl":"10.1093/jbmr/zjae189","url":null,"abstract":"<p><p>Osteogenesis imperfecta (OI) constitutes a family of bone fragility disorders characterized by both genetic and clinical heterogeneity. Several different mouse models reproduce the classic features of OI, and the most commonly studied carry either a spontaneous or genetically induced pathogenic variant in the Col1a1 or Col1a2 gene. When OI is caused by primary alterations of type I collagen, it represents a systemic connective tissue disease that, in addition to the skeleton, also affects several extra-skeletal tissues and organs, such as skin, teeth, lung, heart, and others, where the altered type I collagen is also expressed. Currently, existing mouse models harbor a disease-causing genetic variant in all tissues and do not allow assessing the primary vs secondary consequences of the mutation on a specific organ/system. Here, we describe the generation of the first conditional knock-in allele for Col1a1 that can express a severe OI-causing glycine substitution (p.Gly1146Arg) in the triple helical region of α1(I) but only after Cre-driven recombination in the tissue of choice. We called this new dominant allele Col1a1G1146R-Floxed/+ and introduced it into the murine model. We describe its validation by crossing mice carrying this allele with EIIA-Cre expressing mice and showing that offspring with the recombined allele reproduce the classic features of a severe form of OI. The new mouse model will be useful to study the tissue-specific impact of this severe mutation on organs, such as the lung, the heart, and others.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"114-124"},"PeriodicalIF":5.1,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-Hydroxybutyrate ameliorates osteoarthritis through activation of the ERBB3 signaling pathway in mice. β-羟基丁酸盐通过激活小鼠的 ERBB3 信号通路改善骨关节炎。
IF 5.1 1区 医学
Journal of Bone and Mineral Research Pub Date : 2024-12-31 DOI: 10.1093/jbmr/zjae176
Zhiqing Cai, Zhimin Zhang, Jiarong Leng, Mengyun Xie, Kang Zhang, Jingyi Zhang, Haiyan Zhang, Hongling Hu, Yinghu Deng, Xiaochun Bai, Qiancheng Song, Pinglin Lai
{"title":"β-Hydroxybutyrate ameliorates osteoarthritis through activation of the ERBB3 signaling pathway in mice.","authors":"Zhiqing Cai, Zhimin Zhang, Jiarong Leng, Mengyun Xie, Kang Zhang, Jingyi Zhang, Haiyan Zhang, Hongling Hu, Yinghu Deng, Xiaochun Bai, Qiancheng Song, Pinglin Lai","doi":"10.1093/jbmr/zjae176","DOIUrl":"10.1093/jbmr/zjae176","url":null,"abstract":"<p><p>The ketogenic diet (KD) has demonstrated efficacy in ameliorating inflammation in rats with osteoarthritis (OA). However, the long-term safety of the KD and the underlying mechanism by which it delays OA remain unclear. We found that while long-term KD could ameliorate OA, it induced severe hepatic steatosis in mice. Consequently, we developed 2 versions of ketogenic-based diets: KD supplemented with vitamin D and intermittent KD. Both KD supplemented with vitamin D and intermittent KD effectively alleviated OA by significantly reducing the levels of inflammatory cytokines, cartilage loss, sensory nerve sprouting, and knee hyperalgesia without inducing hepatic steatosis. Furthermore, β-hydroxybutyrate (β-HB), a convenient energy carrier produced by adipocytes, could ameliorate OA without causing liver lesions. Mechanistically, β-HB enhanced chondrocyte autophagy and reduced apoptosis through the activation of Erb-B2 receptor tyrosine kinase 3 (ERBB3) signaling pathway; a pathway which was down-regulated in the articular chondrocytes from both OA patients and mice. Collectively, our findings highlighted the potential therapeutic value of β-HB and KD supplemented with vitamin D and intermittent KD approaches for managing OA.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"140-153"},"PeriodicalIF":5.1,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The challenges of investigating causes and recovery from osteoporosis associated with pregnancy and lactation. 调查与妊娠和哺乳有关的骨质疏松症的原因和康复所面临的挑战。
IF 5.1 1区 医学
Journal of Bone and Mineral Research Pub Date : 2024-12-31 DOI: 10.1093/jbmr/zjae180
Christopher S Kovacs
{"title":"The challenges of investigating causes and recovery from osteoporosis associated with pregnancy and lactation.","authors":"Christopher S Kovacs","doi":"10.1093/jbmr/zjae180","DOIUrl":"10.1093/jbmr/zjae180","url":null,"abstract":"","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"3-4"},"PeriodicalIF":5.1,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of skeletal development and diseases using human pluripotent stem cells. 利用人类多能干细胞建立骨骼发育和疾病模型。
IF 5.1 1区 医学
Journal of Bone and Mineral Research Pub Date : 2024-12-31 DOI: 10.1093/jbmr/zjae178
Hironori Hojo, Shoichiro Tani, Shinsuke Ohba
{"title":"Modeling of skeletal development and diseases using human pluripotent stem cells.","authors":"Hironori Hojo, Shoichiro Tani, Shinsuke Ohba","doi":"10.1093/jbmr/zjae178","DOIUrl":"10.1093/jbmr/zjae178","url":null,"abstract":"<p><p>Human skeletal elements are formed from distinct origins at distinct positions of the embryo. For example, the neural crest produces the facial bones, the paraxial mesoderm produces the axial skeleton, and the lateral plate mesoderm produces the appendicular skeleton. During skeletal development, different combinations of signaling pathways are coordinated from distinct origins during the sequential developmental stages. Models for human skeletal development have been established using human pluripotent stem cells (hPSCs) and by exploiting our understanding of skeletal development. Stepwise protocols for generating skeletal cells from different origins have been designed to mimic developmental trails. Recently, organoid methods have allowed the multicellular organization of skeletal cell types to recapitulate complicated skeletal development and metabolism. Similarly, several genetic diseases of the skeleton have been modeled using patient-derived induced pluripotent stem cells and genome-editing technologies. Model-based drug screening is a powerful tool for identifying drug candidates. This review briefly summarizes our current understanding of the embryonic development of skeletal tissues and introduces the current state-of-the-art hPSC methods for recapitulating skeletal development, metabolism, and diseases. We also discuss the current limitations and future perspectives for applications of the hPSC-based modeling system in precision medicine in this research field.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"5-19"},"PeriodicalIF":5.1,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信