Microbial Cell Factories最新文献

筛选
英文 中文
Arthrospira maxima and biosynthesized zinc oxide nanoparticles as antibacterials against carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii: a review article. 作为抗耐碳青霉烯类肺炎克雷伯氏菌和鲍曼不动杆菌的抗菌剂的 Arthrospira maxima 和生物合成氧化锌纳米粒子:综述文章。
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2024-11-19 DOI: 10.1186/s12934-024-02584-x
Mohamed I Selim, Tarek El-Banna, Fatma Sonbol, Engy Elekhnawy
{"title":"Arthrospira maxima and biosynthesized zinc oxide nanoparticles as antibacterials against carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii: a review article.","authors":"Mohamed I Selim, Tarek El-Banna, Fatma Sonbol, Engy Elekhnawy","doi":"10.1186/s12934-024-02584-x","DOIUrl":"10.1186/s12934-024-02584-x","url":null,"abstract":"<p><p>Carbapenem resistance among bacteria, especially Klebsiella pneumoniae and Acinetobacter baumannii, constitutes a dreadful threat to public health all over the world that requires developing new medications urgently. Carbapenem resistance emerges as a serious problem as this class is used as a last-line option to clear the multidrug-resistant bacteria. Arthrospira maxima (Spirulina) is a well-known cyanobacterium used as a food supplement as it is rich in protein, essential minerals and vitamins and previous studies showed it may have some antimicrobial activity against different organisms. Biosynthesized (green) zinc oxide nanoparticles have been investigated by several researchers as antibacterials because of their safety in health. In this article, previous studies were analyzed to get to a conclusion about their activity as antibacterials.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"311"},"PeriodicalIF":4.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering an Escherichia coli strain for enhanced production of flavonoids derived from pinocembrin. 改造大肠埃希氏菌株,提高提取自松果菊酯的黄酮类化合物的产量。
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2024-11-19 DOI: 10.1186/s12934-024-02582-z
Erik K R Hanko, Christopher J Robinson, Sahara Bhanot, Adrian J Jervis, Nigel S Scrutton
{"title":"Engineering an Escherichia coli strain for enhanced production of flavonoids derived from pinocembrin.","authors":"Erik K R Hanko, Christopher J Robinson, Sahara Bhanot, Adrian J Jervis, Nigel S Scrutton","doi":"10.1186/s12934-024-02582-z","DOIUrl":"10.1186/s12934-024-02582-z","url":null,"abstract":"<p><strong>Background: </strong>Flavonoids are a structurally diverse group of secondary metabolites, predominantly produced by plants, which include a range of compounds with pharmacological importance. Pinocembrin is a key branch point intermediate in the biosynthesis of a wide range of flavonoid subclasses. However, replicating the biosynthesis of these structurally diverse molecules in heterologous microbial cell factories has encountered challenges, in particular the modest pinocembrin titres achieved to date. In this study, we combined genome engineering and enzyme candidate screening to significantly enhance the production of pinocembrin and its derivatives, including chrysin, pinostrobin, pinobanksin, and galangin, in Escherichia coli.</p><p><strong>Results: </strong>By implementing a combination of established strain engineering strategies aimed at enhancing the supply of the building blocks phenylalanine and malonyl-CoA, we constructed an E. coli chassis capable of accumulating 353 ± 19 mg/L pinocembrin from glycerol, without the need for precursor supplementation or the fatty acid biosynthesis inhibitor cerulenin. This chassis was subsequently employed for the production of chrysin, pinostrobin, pinobanksin, and galangin. Through an enzyme candidate screening process involving eight type-1 and five type-2 flavone synthases (FNS), we identified Petroselinum crispum FNSI as the top candidate, producing 82 ± 5 mg/L chrysin. Similarly, from a panel of five flavonoid 7-O-methyltransferases (7-OMT), we found pinocembrin 7-OMT from Eucalyptus nitida to yield 153 ± 10 mg/L pinostrobin. To produce pinobanksin, we screened seven enzyme candidates exhibiting flavanone 3-hydroxylase (F3H) or F3H/flavonol synthase (FLS) activity, with the bifunctional F3H/FLS enzyme from Glycine max being the top performer, achieving a pinobanksin titre of 12.6 ± 1.8 mg/L. Lastly, by utilising a combinatorial library of plasmids encoding G. max F3H and Citrus unshiu FLS, we obtained a maximum galangin titre of 18.2 ± 5.3 mg/L.</p><p><strong>Conclusion: </strong>Through the integration of microbial chassis engineering and screening of enzyme candidates, we considerably increased the production levels of microbially synthesised pinocembrin, chrysin, pinostrobin, pinobanksin, and galangin. With the introduction of additional chassis modifications geared towards improving cofactor supply and regeneration, as well as alleviating potential toxic effects of intermediates and end products, we anticipate further enhancements in the yields of these pinocembrin derivatives, potentially enabling greater diversification in microbial hosts.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"312"},"PeriodicalIF":4.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering of Saccharomyces cerevisiae as a platform strain for microbial production of sphingosine-1-phosphate. 将酿酒酵母工程学作为微生物生产 1-磷酸鞘氨醇的平台菌株。
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2024-11-16 DOI: 10.1186/s12934-024-02579-8
In-Seung Jang, Sung Jin Lee, Yong-Sun Bahn, Seung-Ho Baek, Byung Jo Yu
{"title":"Engineering of Saccharomyces cerevisiae as a platform strain for microbial production of sphingosine-1-phosphate.","authors":"In-Seung Jang, Sung Jin Lee, Yong-Sun Bahn, Seung-Ho Baek, Byung Jo Yu","doi":"10.1186/s12934-024-02579-8","DOIUrl":"10.1186/s12934-024-02579-8","url":null,"abstract":"<p><strong>Background: </strong>Sphingosine-1-phosphate (S1P) is a multifunctional sphingolipid that has been implicated in regulating cellular activities in mammalian cells. Due to its therapeutic potential, there is a growing interest in developing efficient methods for S1P production. To date, the production of S1P has been achieved through chemical synthesis or blood extraction, but these processes have limitations such as complexity and cost. In this study, we generated an S1P-producing Saccharomyces cerevisiae strain by using metabolic engineering and introducing a heterologous sphingolipid biosynthetic pathway to demonstrate the possibility of microbial S1P production.</p><p><strong>Results: </strong>To construct the sphingosine-producing S. cerevisiae strain, both the sphingolipid delta 4 desaturase gene (DES1) and the alkaline ceramidase gene (ACER1) derived from Homo sapiens were introduced into the genome of S. cerevisiae by deleting the dihydrosphingosine phosphate lyase gene (DPL1) and the sphingoid long-chain base kinase gene (LCB5) to prevent S1P degradation and byproduct formation, respectively. The sphingosine-producing strain, DDLA, produced sphingolipids containing sphingosine. In flask fed-batch fermentation, the DDLA strain showed a higher production level of sphingosine under aerobic conditions with high initial cell density. The S1P-producing strain was generated by expressing the human sphingosine kinase gene (SPHK1) under the control of the inducible promoter, while deleting the ORM1 gene involved in the regulation of sphingolipid biosynthesis. The S1P-producing strain, DDLAOgS, exhibited the highest sphingosine production level under fed-batch fermentation in a bioreactor, achieving a 2.6-fold increase compared to flask fermentation. S1P biosynthesis in the DDLAOgS strain was verified by qualitative analysis using electrospray ionization mass spectrometry (ESI-MS).</p><p><strong>Conclusions: </strong>We successfully developed a metabolically engineered S. cerevisiae as a platform strain for microbial production of S1P by introducing an exogenous pathway of sphingolipids metabolism. The engineered yeast strains showed significant capabilities for sphingolipid production, including S1P. To our knowledge, this is the first report demonstrating that engineered S. cerevisiae can be a major platform strain for producing microbial S1P.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"310"},"PeriodicalIF":4.3,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microalgae: a multifaceted catalyst for sustainable solutions in renewable energy, food security, and environmental management. 微藻:可再生能源、粮食安全和环境管理可持续解决方案的多面催化剂。
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2024-11-14 DOI: 10.1186/s12934-024-02588-7
Byung Sun Yu, Seonju Pyo, Jungnam Lee, Kyudong Han
{"title":"Microalgae: a multifaceted catalyst for sustainable solutions in renewable energy, food security, and environmental management.","authors":"Byung Sun Yu, Seonju Pyo, Jungnam Lee, Kyudong Han","doi":"10.1186/s12934-024-02588-7","DOIUrl":"10.1186/s12934-024-02588-7","url":null,"abstract":"<p><p>This review comprehensively examines the various applications of microalgae, focusing on their significant potential in producing biodiesel and hydrogen, serving as sustainable food sources, and their efficacy in treating both municipal and food-related wastewater. While previous studies have mainly focused on specific applications of microalgae, such as biofuel production or wastewater treatment, this review covers these applications comprehensively. It examines the potential for microalgae to be applied in various industrial sectors such as energy, food security, and environmental management. By bridging these different application areas, this review differs from previous studies in providing an integrated and multifaceted view of the industrial applications of microalgae. Since it is essential to increase the productivity of the process to utilize microalgae for various industrial applications, research trends in different microalgae cultivation processes, including the culture system (e.g., open ponds, closed ponds) or environmental conditions (e.g., pH, temperature, light intensity) to improve the productivity of biomass and valuable substances was firstly analyzed. In addition, microalgae cultivation technologies that can maximize the biomass and valuable substances productivity while limiting the potential for contamination that can occur when utilizing these systems have been described to maximize CO<sub>2</sub> reduction. In conclusion, this review has provided a detailed analysis of current research findings and technological innovations, highlighting the important role of microalgae in addressing global challenges related to energy, food supply, and waste management. It has also provided valuable insights into future research directions and potential commercial applications in several bio-related industries, and illustrated how important continued exploration and development in this area is to realize the full potential of microalgae.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"308"},"PeriodicalIF":4.3,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2-O-α-D-glucosyl glycerol production by whole-cell biocatalyst of lactobacilli encapsulating sucrose phosphorylase with improved glycerol affinity and conversion rate. 通过包裹蔗糖磷酸化酶的乳酸菌全细胞生物催化剂生产 2-O-α-D- 葡糖基甘油,提高了甘油亲和力和转化率。
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2024-11-14 DOI: 10.1186/s12934-024-02586-9
Yue Cui, Zhenxiang Xu, Yanying Yue, Wentao Kong, Jian Kong, Tingting Guo
{"title":"2-O-α-D-glucosyl glycerol production by whole-cell biocatalyst of lactobacilli encapsulating sucrose phosphorylase with improved glycerol affinity and conversion rate.","authors":"Yue Cui, Zhenxiang Xu, Yanying Yue, Wentao Kong, Jian Kong, Tingting Guo","doi":"10.1186/s12934-024-02586-9","DOIUrl":"10.1186/s12934-024-02586-9","url":null,"abstract":"<p><strong>Background: </strong>2-O-α-D-glucosyl glycerol (2-αGG) is a valuable ingredient in cosmetics, health-care and food fields. Sucrose phosphorylase (SPase) is a favorable choice for biosynthesis of 2-αGG, while its glucosyl-acceptor affinity and thermodynamic feature remain largely unknown, limiting 2-αGG manufacturing.</p><p><strong>Results: </strong>Here, three SPases were obtained from lactobacilli and bifidobacteria, and the one encoded by Lb. reuteri SDMCC050455 (LrSP) had the best transglucosylation ability, with 2-αGG accounting for 86.01% in the total product. However, the LrSP exhibited an initial forward reaction rate of 11.83/s and reached equilibrium of 56.90% at 110 h, indicating low glycerol affinity and conversion rate. To improve catalytic efficiency, the LrSP was overexpressed in Lb. paracasei BL-SP, of which the intracellular SPase activity increased by 6.67-fold compared with Lb. reuteri SDMCC050455. After chemically permeabilized with Triton X-100, the whole-cell biocatalysis of Lb. paracasei BL-SP was prepared and showed the highest activity, with the initial forward reaction rate improved to 50.17/s and conversion rate risen to 80.79% within 17 h. Using the whole-cell biocatalyst, the final yield of 2-αGG was 203.21 g/L from 1 M sucrose and 1 M glycerol.</p><p><strong>Conclusion: </strong>The food grade strain Lb. paracasei was used for the first time as cell factory to recombinantly express the LrSP and construct a whole-cell biocatalyst for the production of 2-αGG. After condition optimization and cell permeabilization, the whole-cell biocatalyst exhibited 23.89% higher equilibrium conversion and 9.10-fold of productivity compared with the pure enzyme catalytic system. This work would provide a reference for large-scale bioprocess of 2-αGG.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"307"},"PeriodicalIF":4.3,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566083/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The metabolic engineering of Escherichia coli for the high-yield production of hypoxanthine. 对大肠杆菌进行代谢工程改造,以高产生产次黄嘌呤。
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2024-11-14 DOI: 10.1186/s12934-024-02576-x
Siyu Zhao, Tangen Shi, Liangwen Li, Zhichao Chen, Changgeng Li, Zichen Yu, Pengjie Sun, Qingyang Xu
{"title":"The metabolic engineering of Escherichia coli for the high-yield production of hypoxanthine.","authors":"Siyu Zhao, Tangen Shi, Liangwen Li, Zhichao Chen, Changgeng Li, Zichen Yu, Pengjie Sun, Qingyang Xu","doi":"10.1186/s12934-024-02576-x","DOIUrl":"10.1186/s12934-024-02576-x","url":null,"abstract":"<p><strong>Background: </strong>Hypoxanthine, prevalent in animals and plants, is used in the production of food additives, nucleoside antiviral drugs, and disease diagnosis. Current biological fermentation methods synthesize quantities insufficient to meet industrial demands. Therefore, this study aimed to develop a strain capable of industrial-scale production of hypoxanthine.</p><p><strong>Results: </strong>De novo synthesis of hypoxanthine was achieved by blocking the hypoxanthine decomposition pathway, thus alleviating transcriptional repression and multiple feedback inhibition, and introducing a purine operon from Bacillus subtilis to construct a chassis strain. The effects of knocking out the IMP(Inosine 5'-monophosphate) branch on the growth status and titer of the strain were then investigated, and the effectiveness of adenosine deaminase and adenine deaminase was verified. Overexpressing these enzymes created a dual pathway for hypoxanthine synthesis, enhancing the metabolic flow of hypoxanthine synthesis and preventing auxotrophic strain formation. Introducing IMP-specific 5' -nucleotidase addressed the issue of adenylate accumulation. In addition, the metabolic flow of the guanine branch was dynamically regulated by the guaB gene. The supply of glutamine and aspartic acid precursors was enhanced by introducing an exogenous glnA mutant gene, overexpressing aspC, and replacing the weaker promoter to regulate the aspartic acid branching pathway. Ultimately, fermentation in a 5 L bioreactor for 48 h produced 30.6 g/L hypoxanthine, with a maximum real-time productivity of 1.4 g/L/h, the highest value of hypoxanthine production by microbial fermentation reported so far.</p><p><strong>Conclusions: </strong>The intracellular purine biosynthesis pathway is extensive and regulated at multiple levels in cells. The IMP branch in the hypoxanthine synthesis pathway has a higher metabolic flux. The current challenge lies in systematically allocating the metabolic flux within the branch pathway to achieve substantial product accumulation. In this study, E. coli was used as the chassis strain to construct a dual pathway for IMP and AMP(Adenosine 5'-monophosphate) synergistic hypoxanthine synthesis and dynamically regulate the guanine branch pathway. Overall, our experimental efforts culminated in a high-yield, plasmid- and defect-free engineered hypoxanthine strain.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"309"},"PeriodicalIF":4.3,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterologous protein exposure and secretion optimization in Mycoplasma pneumoniae. 肺炎支原体的异源蛋白暴露和分泌优化
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2024-11-13 DOI: 10.1186/s12934-024-02574-z
Yamile Ana, Daniel Gerngross, Luis Serrano
{"title":"Heterologous protein exposure and secretion optimization in Mycoplasma pneumoniae.","authors":"Yamile Ana, Daniel Gerngross, Luis Serrano","doi":"10.1186/s12934-024-02574-z","DOIUrl":"10.1186/s12934-024-02574-z","url":null,"abstract":"<p><p>The non-pathogenic Mycoplasma pneumoniae engineered chassis (Mycochassis) has demonstrated the ability to express therapeutic molecules in vitro and to be effective for treatment of lung infectious diseases in in vivo mouse models. However, the expression of heterologous molecules, whether secreted or exposed on the bacterial membrane has not been optimized to ensure sufficient secretion and/or exposure levels to exert a maximum in vivo biological effect. Here, we have improved the currently used secretion signal from MPN142 protein. We found that mutations at P1' position of the signal peptide cleavage site do not abrogate secretion but affect it. Increasing hydrophobicity and mutations at the C-terminal of the signal peptide increases secretion. We tested different lipoprotein signal peptides as possible N-terminal protein anchoring motifs on the Mpn cell surface. Unexpectedly we found that these peptides exhibit variable retention and secretion rates of the protein, with some sequences behaving as full secretion motifs. This raises the question of the biological role of the lipobox motif traditionally thought to anchor membrane proteins without a helical transmembrane domain. These results altogether represent a step forward in chassis optimization, offering different sequences for secretion or membrane retention, which could be used to improve Mycochassis as a delivery vector, and broadening its therapeutic possibilities.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"306"},"PeriodicalIF":4.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558893/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene expression screening and cell factory engineering for enhancing echinocandin B production in Aspergillus nidulans NRRL8112. 提高黑曲霉 NRRL8112 产出棘白菌素 B 的基因表达筛选和细胞工厂工程。
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2024-11-13 DOI: 10.1186/s12934-024-02577-w
Yuan Tian, Shumin Wang, Youchu Ma, Yanling Li, Rui Li, Youxiu Fu, Rui Zhang, Rui Zhu, Fanglong Zhao
{"title":"Gene expression screening and cell factory engineering for enhancing echinocandin B production in Aspergillus nidulans NRRL8112.","authors":"Yuan Tian, Shumin Wang, Youchu Ma, Yanling Li, Rui Li, Youxiu Fu, Rui Zhang, Rui Zhu, Fanglong Zhao","doi":"10.1186/s12934-024-02577-w","DOIUrl":"10.1186/s12934-024-02577-w","url":null,"abstract":"<p><strong>Background: </strong>Echinocandin B (ECB) is a key precursor of the antifungal drug anidulafungin and its biosynthesis occurs via ani gene cluster in Aspergillus nidulans NRRL8112. Strain improvement for industrial ECB production has mainly relied on mutation breeding due to the lack of genetic tools.</p><p><strong>Results: </strong>Here, a CRISPR-base-editing tool was developed in A. nidulans NRRL8112 for simultaneous inactivation of the nkuA gene and two marker genes, pryoA and riboB, which enabled efficient genetic manipulation. Then, in-vivo plasmid assembly was harnessed for ani gene expression screening, identifying the rate-limiting enzyme AniA and a pathway-specific transcription factor AniJ. Stepwise titer enhancement was achieved by overexpressing aniA and/or aniJ, and ECB production reached 1.5 g/L during 5-L fed-batch fermentation, an increase of ~ 30-fold compared with the parent strain.</p><p><strong>Conclusion: </strong>This study, for the first time, revealed the regulatory mechanism of ECB biosynthesis and harnessed genetic engineering for the development of an efficient ECB-producing strain.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"305"},"PeriodicalIF":4.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Streptomyces griseorubens as a microbial cell factory for extracellular uricase production and bioprocess optimization using statistical approach. 使用统计方法优化作为细胞外尿酸酶生产微生物细胞工厂的 Streptomyces griseorubens 和生物工艺。
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2024-11-12 DOI: 10.1186/s12934-024-02561-4
Noura El-Ahmady El-Naggar, Sara M El-Ewasy, Nancy M El-Shweihy
{"title":"Streptomyces griseorubens as a microbial cell factory for extracellular uricase production and bioprocess optimization using statistical approach.","authors":"Noura El-Ahmady El-Naggar, Sara M El-Ewasy, Nancy M El-Shweihy","doi":"10.1186/s12934-024-02561-4","DOIUrl":"10.1186/s12934-024-02561-4","url":null,"abstract":"<p><strong>Background: </strong>Uricase is a bio-drug used to reduce urate accumulation in gout disease. Thus, there is a continuous demand for screening soil samples derived from a variety of different sources in order to isolate a strain that possesses a high potential for producing uricase.</p><p><strong>Methods: </strong>Streptomyces sp. strain NEAE-5 demonstrated a significant capacity for uricase production was identified based on the physiological, morphological and biochemical characteristics, as well as 16S rDNA sequencing analysis. Using a Plackett-Burman statistical design, the impact of eighteen process factors on uricase production by Streptomyces griseorubens strain NEAE-5 was investigated. Using central composite design, the most important variables that had a favourable positive impact on uricase production by Streptomyces griseorubens strain NEAE-5 were further optimized.</p><p><strong>Results: </strong>It is clear that the morphological and chemotaxonomic features of Streptomyces sp. strain NEAE-5 are typical for the Streptomyces genus. Phylogenetic analysis indicated that Streptomyces sp. strain NEAE-5 belongs to the genus Streptomyces and closely related to Streptomyces griseorubens which it has a 95-96% identity in 16S rDNA gene sequencing. Accordingly, the strain is proposed to be identified as Streptomyces griseorubens strain NEAE-5. The three factors that had the significant positive impacts on uricase production were uric acid, hypoxanthine, and yeast extract. As a result, the best conditions for achieving the highest experimental uricase production by Streptomyces griseorubens strain NEAE-5 after central composite design were (g/L): uric acid 6.96, glycerol 5, hypoxanthine 5.51, MgSO<sub>4</sub>.7H<sub>2</sub>O 0.1, KNO<sub>3</sub> 2, CaCl<sub>2</sub> 0.5, K<sub>2</sub>HPO<sub>4</sub> 0.5, NaCl 0.5, yeast extract 1.08. In addition, the period of incubation is seven days, pH 7.5 and 37 °C with an inoculum size of 2 mL (10<sup>5</sup> cfu/mL) /100 mL medium.</p><p><strong>Conclusions: </strong>After optimization, the obtained uricase activity was 120.35 U/mL, indicating that the Streptomyces griseorubens strain NEAE-5 is a potent uricase producer and that the statistical approach used for optimization was appropriate.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"304"},"PeriodicalIF":4.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking marine microbial treasures: new PBP2a-targeted antibiotics elicited by metals and enhanced by RSM-driven transcriptomics and chemoinformatics. 揭开海洋微生物宝藏的面纱:由金属诱发并通过 RSM 驱动的转录组学和化学信息学增强的新型 PBP2a 靶向抗生素。
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2024-11-12 DOI: 10.1186/s12934-024-02573-0
Syed Shams Ul Hassan, JiaJia Wu, Tao Li, Xuewei Ye, Abdur Rehman, Shikai Yan, Huizi Jin
{"title":"Unlocking marine microbial treasures: new PBP2a-targeted antibiotics elicited by metals and enhanced by RSM-driven transcriptomics and chemoinformatics.","authors":"Syed Shams Ul Hassan, JiaJia Wu, Tao Li, Xuewei Ye, Abdur Rehman, Shikai Yan, Huizi Jin","doi":"10.1186/s12934-024-02573-0","DOIUrl":"10.1186/s12934-024-02573-0","url":null,"abstract":"<p><p>Elicitation through abiotic stress, including heavy metals, is a new natural product drug discovery technique. In this research, three compounds 1, 2, and 6, were achieved by triggering zinc and nickel on marine Sphingomonas sp. and Streptomyces sp., which were absent in normal culture. Compound 5 was obtained for the first time from marine bacteria. All compounds showed potent antibacterial activity against Staphylococcus aureus and bactericidal effect at 300 µm, but 6 was more active. The potent compound 6 production was further enhanced through response surface methodology by optimizing the condition consisting of nickel 1 mM ions, 20 mg/L sucrose, 30 mg/L salt and culture time 14 days. Under these conditions, the SM-6 production was enhanced with a yield of 6.3 mg/L, which was absent in the normal culture. Further transcriptome analysis of compound 6 unveiled its antibacterial activity on S. aureus by modulating heat shock protein genes, disrupting protein folding and synthesis, and perturbing cellular redox balance, leading to a comprehensive inhibition of normal bacterial growth. In addition, ADMET has shown that all compounds are safe for cardiac and hepatotoxicity. To determine the anti-bacterial mechanism, all compounds were docked with PBP2a and DNA gyrase enzyme, and TLR-4 protein for predicting vaccine construct, and the best docking score was achieved against PBP2a enzyme with the highest score of -10.2 for compound 6. In-silico cloning was carried out to ensure the expression of proteins generated and were cloned using S.aureus as a host. The simulation studies have shown that both SM-6-PBP2a and TLR-4-PBP2a complex are stable with the system. This study presents a new approach to anti-bacterial drug discovery from microorganisms through heavy metals triggering and enhancing the compound production through response surface methodology.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"303"},"PeriodicalIF":4.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信