Microbial Cell Factories最新文献

筛选
英文 中文
Bacterial biosynthesis of abietane-type diterpene ferruginol from glucose.
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2025-03-19 DOI: 10.1186/s12934-025-02691-3
Hyun Jeong Lee, Chaeyeon Kim, Yu Been Heo, Seong-Eun Kim, Han Min Woo
{"title":"Bacterial biosynthesis of abietane-type diterpene ferruginol from glucose.","authors":"Hyun Jeong Lee, Chaeyeon Kim, Yu Been Heo, Seong-Eun Kim, Han Min Woo","doi":"10.1186/s12934-025-02691-3","DOIUrl":"https://doi.org/10.1186/s12934-025-02691-3","url":null,"abstract":"<p><strong>Background: </strong>Microbial supply of plant extracts is a promising biomanufacturing strategy that requires engineering of metabolic pathways and enzymes. This study presents the engineering of Corynebacterium glutamicum for heterologous production of diterpenes miltiradiene and ferruginol.</p><p><strong>Results: </strong>Through targeted metabolic pathway modifications, including inactivation of pyruvate carboxylase and phytoene synthase, the HL01 strain was optimized to enhance pyruvate and geranylgeranyl pyrophosphate (GGPP) pools. Overexpression of key MEP pathway enzymes (Dxs and Idi) and implementation of three GGPP synthase modules further boosted diterpene synthesis. Then, combining those modules with diterpene synthase (DiTPS) and intact P450 reductase modules (CYP76AH1 and CPR1) enabled production of miltiradiene (ferruginol equivalent) at 237.46 ± 34.8 mg/L and ferruginol at 107.34 ± 1.2 mg/L under constant glucose feeding, respectively.</p><p><strong>Conclusions: </strong>Modular gene expression for heterologous metabolic pathway can be optimized for bacterial biosynthesis. This is the first demonstration of ferruginol production in bacteria. These findings pave the way for further optimization of diterpene biosynthesis through pathway engineering and module integration in bacterial systems.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"67"},"PeriodicalIF":4.3,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gluconobacter oxydans DSM 50049 - an efficient biocatalyst for oxidation of 5-formyl-2-furancarboxylic acid (FFCA) to 2,5-furandicarboxylic acid (FDCA).
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2025-03-19 DOI: 10.1186/s12934-025-02689-x
Mahmoud Sayed, Mohamed Ismail, Anirudh Sivasubramanian, Riko Kawano, Chengsi Li, Sara Jonsdottir Glaser, Rajni Hatti-Kaul
{"title":"Gluconobacter oxydans DSM 50049 - an efficient biocatalyst for oxidation of 5-formyl-2-furancarboxylic acid (FFCA) to 2,5-furandicarboxylic acid (FDCA).","authors":"Mahmoud Sayed, Mohamed Ismail, Anirudh Sivasubramanian, Riko Kawano, Chengsi Li, Sara Jonsdottir Glaser, Rajni Hatti-Kaul","doi":"10.1186/s12934-025-02689-x","DOIUrl":"10.1186/s12934-025-02689-x","url":null,"abstract":"<p><strong>Background: </strong>2,5-Furandicarboxylic acid (FDCA) is a promising building block for biobased recyclable polymers and a platform for other potential biobased chemicals. The common route of its production is by oxidation of sugar-derived 5-hydroxymethylfurfural (HMF). Several reports on biocatalytic oxidation using whole microbial cells or enzymes have been reported, which offers potentially a greener alternative compared to the chemical process. HMF oxidases and aryl alcohol oxidases are the only enzymes able to catalyse the complete oxidation to FDCA, however at low concentrations and are subject to inhibition by the FFCA (5-formylfuran-2-carboxylic acid) intermediate. The present report presents a study on the oxidation of FFCA to FDCA using the obligately aerobic bacterium Gluconobacter oxydans and identification of the enzymes catalyzing the reaction.</p><p><strong>Results: </strong>Screening of three different strains showed G. oxydans DSM 50049 to possess the highest FFCA oxidation efficiency. Optimal reaction conditions for obtaining 100% conversion of 10 g/L (71 mM) FFCA to FDCA at 100% reaction yield were at pH 5, 30 °C and using 200 mg wwt /mL cells harvested at mild-exponential phase. In a reaction run at a 1 L scale using a total of 15 g/L (107 mM) FFCA supplied in a fed-batch mode, FDCA was obtained at a yield of 90% in 8.5 h. The product was recovered at 82% overall yield and 99% purity using a simple recovery process. Screening of several oxidoreductase enzymes from the gene sequences identified in the bacterial genome revealed two proteins annotated as membrane-bound aldehyde dehydrogenase (MALDH) and coniferyl aldehyde dehydrogenase (CALDH) to be the enzymes catalyzing the oxidization of FFCA.</p><p><strong>Conclusion: </strong>The study shows G. oxydans DSM 50049 and its enzymes to be promising biocatalysts for use in the FDCA production process from biomass. The high reaction rate and yield motivate further studies on characterization of the identified enzymes exhibiting the FFCA oxidizing activity, which can be used to construct an enzyme cascade together e.g. with HMF oxidase or aryl alcohol oxidase for one-pot production of FDCA from 5-HMF.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"68"},"PeriodicalIF":4.3,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of an efficient expression system for human chaperone BiP in Pichia pastoris: production optimization and functional validation.
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2025-03-18 DOI: 10.1186/s12934-025-02679-z
Eimantas Žitkus, Evaldas Čiplys, Mantas Žiaunys, Andrius Sakalauskas, Rimantas Slibinskas
{"title":"Development of an efficient expression system for human chaperone BiP in Pichia pastoris: production optimization and functional validation.","authors":"Eimantas Žitkus, Evaldas Čiplys, Mantas Žiaunys, Andrius Sakalauskas, Rimantas Slibinskas","doi":"10.1186/s12934-025-02679-z","DOIUrl":"https://doi.org/10.1186/s12934-025-02679-z","url":null,"abstract":"<p><strong>Background: </strong>Human BiP, or GRP78, is a molecular chaperone mainly found in the endoplasmic reticulum (ER). However, a growing amount of data also associates BiP with many distinct functions in subcellular locations outside the ER. Notably, several diseases have been BiP-related, so the protein could potentially be used for therapeutic purposes. This study aimed to optimize a high cell-density fermentation process for the production of recombinant human BiP (rhBiP) in yeast Pichia pastoris in a mineral medium.</p><p><strong>Results: </strong>P. pastoris cells successfully synthesized and secreted full-length rhBiP protein in a complex growth medium. However, secreted rhBiP titer was considerably lower when P. pastoris was cultivated in a defined mineral basal salt medium (BSM). During rhBiP synthesis optimization in shake flasks, it was found that the addition of reducing compounds (DTT or TCEP) to mineral BSM medium is essential for high-yield rhBiP production. Furthermore, rhBiP secretion in the BSM medium was significantly increased by feeding yeast with an additional carbon source. The addition of 2 mM DTT and 0.5-1.0% of glucose/glycerol to the BSM medium increased rhBiP titer ~ 8 times in the shake flasks. Glucose/methanol mixture feeding with added 2 mM DTT before induction was applied in high-density P. pastoris fermentation in bioreactor. Oxygen-limited fermentation strategy allowed to achieve ~ 70 mg/L rhBiP in BSM medium. Hydrophobic interaction and anion exchange chromatography were used for rhBiP protein purification. Approximately 45 mg rhBiP was purified from 1 L growth medium, and according to SDS-PAGE, ~ 90% purity was reached. According to data presented in this study, rhBiP protein derived from P. pastoris is a full-length polypeptide that has ATPase activity. In addition, we show that P. pastoris-derived rhBiP effectively inhibits neurodegenerative disease-related amyloid beta 1-42 (Aβ<sub>42</sub>) peptide and alpha-synuclein (α-Syn) protein aggregation in vitro.</p><p><strong>Conclusions: </strong>A scalable bioprocess to produce rhBiP in P. pastoris was developed, providing a high yield of biologically active protein in a chemically defined mineral medium. It opens a source of rhBiP to accelerate further therapeutic applications of this important protein.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"66"},"PeriodicalIF":4.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acetol biosynthesis enables NADPH balance during nitrogen limitation in engineered Escherichia coli.
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2025-03-16 DOI: 10.1186/s12934-025-02687-z
Suresh Sudarsan, Philipp Demling, Emre Ozdemir, Aziz Ben Ammar, Philip Mennicken, Joerg M Buescher, Guido Meurer, Birgitta E Ebert, Lars M Blank
{"title":"Acetol biosynthesis enables NADPH balance during nitrogen limitation in engineered Escherichia coli.","authors":"Suresh Sudarsan, Philipp Demling, Emre Ozdemir, Aziz Ben Ammar, Philip Mennicken, Joerg M Buescher, Guido Meurer, Birgitta E Ebert, Lars M Blank","doi":"10.1186/s12934-025-02687-z","DOIUrl":"10.1186/s12934-025-02687-z","url":null,"abstract":"<p><strong>Background: </strong>Nutrient limitation strategies are commonly applied in bioprocess development to engineered microorganisms to further maximize the production of the target molecule towards theoretical limits. Biomass formation is often limited under the limitation of key nutrients, and understanding how fluxes in central carbon metabolism are re-routed during the transition from nutrient excess to nutrient-limited condition is vital to target and tailor metabolic engineering strategies. Here, we report the physiology and intracellular flux distribution of an engineered acetol-producing Escherichia coli on glycerol under nitrogen-limited, non-growing production conditions.</p><p><strong>Results: </strong>Acetol production in the engineered E. coli strain is triggered upon nitrogen depletion. During nitrogen limitation, glycerol uptake decreased, and biomass formation rates ceased. We applied <sup>13</sup>C-flux analysis with 2-<sup>13</sup>C glycerol during exponential growth and nitrogen starvation to elucidate flux re-routing in the central carbon metabolism. The results indicate a metabolically active non-growing state with significant flux re-routing towards acetol biosynthesis and reduced flux through the central carbon metabolism. The acetol biosynthesis pathway is favorable for maintaining the NADPH/NADP<sup>+</sup> balance.</p><p><strong>Conclusion: </strong>The results reported in this study illustrate how the production of a value-added chemical from a waste stream can be connected to the metabolism of the whole-cell biocatalyst, making product formation mandatory for the cell to maintain its NADPH/NADP<sup>+</sup> balance. This has implications for process design and further metabolic engineering of the whole-cell biocatalyst.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"65"},"PeriodicalIF":4.3,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910842/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143649492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The comparison of gut microbiota between different types of epilepsy in children.
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2025-03-14 DOI: 10.1186/s12934-025-02684-2
Siwei Fang, Nanfei Hu, Changci Zhou, Jiajia You, Liwen Wu, Xiongfeng Pan, Zhenghui Xiao, Jun Qiu
{"title":"The comparison of gut microbiota between different types of epilepsy in children.","authors":"Siwei Fang, Nanfei Hu, Changci Zhou, Jiajia You, Liwen Wu, Xiongfeng Pan, Zhenghui Xiao, Jun Qiu","doi":"10.1186/s12934-025-02684-2","DOIUrl":"10.1186/s12934-025-02684-2","url":null,"abstract":"<p><strong>Objective: </strong>To better understand the variations in gut microbiota in children with different types of epilepsy.</p><p><strong>Methods: </strong>Thirty-seven children with epilepsy were included in the case group, which was further divided into focal (group A, n = 28) and generalized epilepsy groups (group B, n = 9) based on the origin and extent of the seizures. The focal epilepsy group was subdivided into the benign childhood epilepsy with centrotemporal spikes (BECT) (group C, n = 9) and non-BECT groups (group D, n = 19) based on the appearance of typical centrotemporal spikes or spike-wave complexes on the electroencephalogram (EEG). Additionally, 14 healthy children were selected as the control group (group E, n = 14).</p><p><strong>Results: </strong>Significant differences were observed in the diversity and composition of gut microbiota between the case and control groups. At the genus level, the abundance of Megamonas (P = 0.001), Streptococcus (P<0.001), Romboutsia (P = 0.001), Bacteroides (P<0.05), and Escherichia/Shigella (P<0.05) was significantly higher in the focal epilepsy group than in the control group (0.027 vs. 0.00009, P = 0.001; 0.016 vs. 0.002, P<0.001; 0.013 vs. 0.002, P = 0.001; 0.030 vs. 0.002, P<0.05, respectively). Additionally, Escherichia/Shigella (P<0.05) was more abundant in the case group compared to the control group (0.033 vs. 0.002, P<0.05). Bacteroides (P<0.05) was more abundant in the control group than in the case group. Megamonas (P<0.001) and Collinsella (P<0.05) were significantly more prevalent in the BECT group than in the control group (0.034 vs. 0.00009, P<0.001; 0.014 vs. 0.001, P<0.05, respectively). In the non-BECT group, compared to the control group, Megamonas (P = 0.013), Streptococcus (P<0.001), Romboutsia (P = 0.001), and Escherichia/Shigella (P<0.05) were found in greater abundance (0.023 vs. 0.00009, P = 0.013; 0.018 vs. 0.002, P<0.001; 0.014 vs. 0.002, P = 0.001; 0.037 vs. 0.002, P<0.05, respectively).</p><p><strong>Conclusions: </strong>Though, there were no statistically significant differences in gut microbiota between the different types of epilepsy, the gut microbiota of children with epilepsy significantly differed from that of healthy controls. The increased abundance of Escherichia/Shigella may lead to the worsening of clinical phenotypes and poor prognosis, and it could be a candidate biomarker to identify the focal epilepsy or even non-benign childhood epilepsy with centrotemporal spikes, potentially providing new therapeutic targets for the future.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"64"},"PeriodicalIF":4.3,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908097/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioremediation of non-point hydrogen sulfide emissions using bacterial cellulose/activated carbon membrane.
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2025-03-12 DOI: 10.1186/s12934-025-02686-0
Mingbo Yang, Yan Zhang, Xueqing Zhao, Ge Gao, Yucheng Shi, Yifan Wang, Mengyue Duan, Ziye Guo, Xiaodong Ma, Ting Ma, Guoqiang Li
{"title":"Bioremediation of non-point hydrogen sulfide emissions using bacterial cellulose/activated carbon membrane.","authors":"Mingbo Yang, Yan Zhang, Xueqing Zhao, Ge Gao, Yucheng Shi, Yifan Wang, Mengyue Duan, Ziye Guo, Xiaodong Ma, Ting Ma, Guoqiang Li","doi":"10.1186/s12934-025-02686-0","DOIUrl":"10.1186/s12934-025-02686-0","url":null,"abstract":"<p><strong>Background: </strong>Hydrogen sulfide (H<sub>2</sub>S) gas, characterized by its low odor threshold and toxicity, poses significant challenges in non-point source odor management. Traditional biotechnologies are effective in removing malodorous gases from point sources but they are limited for non-point source odor control.</p><p><strong>Results: </strong>In this study, the sqr and pdo genes from Cupriavidus pinatubonensis JMP134 were introduced into the bacterial cellulose-producing strain Kosakonia oryzendophytica FY-07. This genetic modification enhanced the strain's sulfur oxidation capacity, which increased over time, with an average transformation capacity of approximately 275 mg·L<sup>- 1</sup>·day<sup>- 1</sup>. By incorporating 1% activated carbon, an efficient, naturally degradable bio-composite membrane was developed, achieving a maximum H<sub>2</sub>S adsorption capacity of 7.3 g·m<sup>- 3</sup>·day<sup>- 1</sup>. FY-07 remained stable in soil and improved the microbial community for H<sub>2</sub>S treatment.</p><p><strong>Conclusion: </strong>The resulting bio-composite membrane is environment-friendly and efficient, making it suitable for emergency odor control in landfills. This study offers recommendations for using membrane materials in managing non-point hydrogen sulfide emissions.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"63"},"PeriodicalIF":4.3,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATP deficiency triggers ganoderic acids accumulation via fatty acid β-oxidation pathway in Ganoderma lucidum.
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2025-03-11 DOI: 10.1186/s12934-025-02668-2
Weidong Liu, Yin Sun, Sining Yue, Yi Kong, Qianqian Cong, Yufei Lan, Mingwen Zhao, Liang Shi
{"title":"ATP deficiency triggers ganoderic acids accumulation via fatty acid β-oxidation pathway in Ganoderma lucidum.","authors":"Weidong Liu, Yin Sun, Sining Yue, Yi Kong, Qianqian Cong, Yufei Lan, Mingwen Zhao, Liang Shi","doi":"10.1186/s12934-025-02668-2","DOIUrl":"10.1186/s12934-025-02668-2","url":null,"abstract":"<p><strong>Background: </strong>Ganoderic acids (GAs), recognized as significant triterpenoid bioactive components in Ganoderma lucidum, exhibit a broad spectrum of pharmacological activities, including immunomodulation, anti-cancer, and anti-aging properties. Despite their significant pharmacological potential, the low yield of GAs from natural sources has emerged as a critical bottleneck hindering their broader application in the pharmaceutical and health care industries. Previous studies have suggested that environmental perturbations can influence energy metabolism, potentially impacting the biosynthesis of bioactive compounds. However, the specific influence of environmental changes on energy metabolism and subsequent effects on GAs synthesis in G. lucidum remains an understudied area.</p><p><strong>Results: </strong>We demonstrated that intracellular ATP deficiency significantly influences GAs accumulation induced by alterations in energy metabolism. Intracellular ATP deficiency was consistently observed under all four known conditions that induce GAs accumulation: heat stress (HS), nitrogen limitation, treatment with 50 µM methyl jasmonate (MeJA), and treatment with 200 µM salicylic acid (SA). Consistent with these findings, silencing the ATP synthase beta subunit (ATPsyn-beta) or treating with oligomycin (Oli), an ATP synthase inhibitor, increased GAs accumulation and induced intracellular ATP deficiency in G. lucidum. Our results revealed an increase in the GAs biosynthetic pathway and increased levels of the GAs precursor acetyl-CoA in mycelia with intracellular ATP deficiency. Enhanced fatty acid β-oxidation was identified as the primary source of additional acetyl-CoA, indicating that this process, induced by intracellular ATP deficiency, is crucial for GAs accumulation.</p><p><strong>Conclusions: </strong>This study demonstrated that changes in intracellular ATP content respond to environmental perturbations and impact the biosynthesis of GAs, holding substantial implications for production practices. Modulating ATP levels could increase GAs yields, cater to market demands, and reduce costs. The research also furnishes a scientific foundation for optimizing cultivation conditions, employing genetic engineering to refine biosynthetic pathways, and leveraging environmental control to boost production efficiency.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"62"},"PeriodicalIF":4.3,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900599/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic engineering for sustainable xylitol production from diverse carbon sources in Pichia pastoris.
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2025-03-10 DOI: 10.1186/s12934-025-02683-3
Xiaocong Lu, Mingxin Chang, Xiangyu Li, Wenbing Cao, Zhoukang Zhuang, Qian Wu, Tao Yu, Aiqun Yu, Hongting Tang
{"title":"Metabolic engineering for sustainable xylitol production from diverse carbon sources in Pichia pastoris.","authors":"Xiaocong Lu, Mingxin Chang, Xiangyu Li, Wenbing Cao, Zhoukang Zhuang, Qian Wu, Tao Yu, Aiqun Yu, Hongting Tang","doi":"10.1186/s12934-025-02683-3","DOIUrl":"10.1186/s12934-025-02683-3","url":null,"abstract":"<p><p>Xylitol, known for its health benefits, is a valuable compound in the food and pharmaceutical industries. However, conventional chemical production methods are often unsustainable for large-scale applications, prompting the need for alternative approaches. This study demonstrates a significant enhancement in xylitol production using microbial cell factories, optimized through metabolic engineering. Two synthetic pathways were combined, and the introduction of a novel NADPH-dependent xylitol dehydrogenase further boosted xylitol yields, achieving 0.14 g xylitol/g glucose-a record-high yield for microbial systems. Additionally, the use of sustainable feedstocks, such as glycerol and methanol, led to the production of 7000 mg/L xylitol with a yield of 0.35 g xylitol/g glycerol, and 250 mg/L xylitol from methanol. These results underscore the potential for eco-friendly, cost-effective xylitol production, providing a robust foundation for future industrial-scale biotechnological applications.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"59"},"PeriodicalIF":4.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mining yeast diversity unveils novel targets for improved heterologous laccase production in Saccharomyces cerevisiae.
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2025-03-10 DOI: 10.1186/s12934-025-02677-1
Ryan Wei Kwan Wong, Marissa Foo, Jasmine R S Lay, Tiffany L T Wai, Jackson Moore, Fabien Dutreux, Cristen Molzahn, Corey Nislow, Vivien Measday, Joseph Schacherer, Thibault Mayor
{"title":"Mining yeast diversity unveils novel targets for improved heterologous laccase production in Saccharomyces cerevisiae.","authors":"Ryan Wei Kwan Wong, Marissa Foo, Jasmine R S Lay, Tiffany L T Wai, Jackson Moore, Fabien Dutreux, Cristen Molzahn, Corey Nislow, Vivien Measday, Joseph Schacherer, Thibault Mayor","doi":"10.1186/s12934-025-02677-1","DOIUrl":"10.1186/s12934-025-02677-1","url":null,"abstract":"<p><p>The budding yeast Saccharomyces cerevisiae is a widely utilized host cell for recombinant protein production due to its well studied and annotated genome, its ability to secrete large and post-translationally modified proteins, fast growth and cost-effective culturing. However, recombinant protein yields from S. cerevisiae often fall behind that of other host systems. To address this, we developed a high-throughput screen of wild, industrial and laboratory S. cerevisiae isolates to identify strains with a natural propensity for greater recombinant protein production, specifically focussing on laccase multicopper oxidases from the fungi Trametes trogii and Myceliophthora thermophila. Using this method, we identified 20 non-laboratory strains with higher capacity to produce active laccase. Interestingly, lower levels of laccase mRNA were measured in most cases, indicating that the drivers of elevated protein production capacity lie beyond the regulation of recombinant gene expression. We characterized the identified strains using complementary genomic and proteomic approaches to reveal several potential pathways driving the improved expression phenotype. Gene ontology analysis suggests broad changes in cellular metabolism, specifically in genes/proteins involved in carbohydrate catabolism, thiamine biosynthesis, transmembrane transport and vacuolar degradation. Targeted deletions of the hexose transporter HXT11 and the Coat protein complex II interacting paralogs PRM8 and 9, involved in ER to Golgi transport, resulted in significantly improved laccase production from the S288C laboratory strain. Whereas the deletion of the Hsp110 SSE1 gene, guided by our proteomic analysis, also led to higher laccase activity, we did not observe major changes of the protein homeostasis network within the strains with higher laccase activity. This study opens new avenues to leverage the vast diversity of Saccharomyces cerevisiae for recombinant protein production, as well as offers new strategies and insights to enhance recombinant protein yields of current strains.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"60"},"PeriodicalIF":4.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892151/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements and challenges in microalgal protein production: A sustainable alternative to conventional protein sources.
IF 4.3 2区 生物学
Microbial Cell Factories Pub Date : 2025-03-10 DOI: 10.1186/s12934-025-02685-1
Sameh S Ali, Rania Al-Tohamy, Majid Al-Zahrani, Michael Schagerl, Michael Kornaros, Jianzhong Sun
{"title":"Advancements and challenges in microalgal protein production: A sustainable alternative to conventional protein sources.","authors":"Sameh S Ali, Rania Al-Tohamy, Majid Al-Zahrani, Michael Schagerl, Michael Kornaros, Jianzhong Sun","doi":"10.1186/s12934-025-02685-1","DOIUrl":"10.1186/s12934-025-02685-1","url":null,"abstract":"<p><p>The increasing global demand for sustainable protein sources necessitates the exploration of alternative solutions beyond traditional livestock and crop-based proteins. Microalgae present a promising alternative due to their high protein content, rapid biomass accumulation, and minimal land and water requirements. Furthermore, their ability to thrive on non-arable land and in wastewater systems enhances their sustainability and resource efficiency. Despite these advantages, scalability and economical feasibility remain major challenges in microalgal protein production. This review explores recent advancements in microalgal protein cultivation and extraction technologies, including pulsed electric field, ultrasound-assisted extraction, enzyme-assisted extraction, and microwave-assisted extraction. These innovative techniques have significantly improved protein extraction efficiency, purity, and sustainability, while addressing cell wall disruption and protein recovery challenges. Additionally, the review examines protein digestibility and bioavailability, particularly in the context of human nutrition and aquafeed applications. A critical analysis of life cycle assessment studies highlights the environmental footprint and economical feasibility of microalgal protein production compared to conventional protein sources. Although microalgal protein production requires significant energy inputs, advancements in biorefinery approaches, carbon dioxide sequestration, and industrial integration can help mitigate these limitations. Finally, this review outlines key challenges and future research directions, emphasizing the need for cost reduction strategies, genetic engineering for enhanced yields, and industrial-scale process optimization. By integrating innovative extraction techniques with biorefinery models, microalgal proteins hold immense potential as a sustainable, high-quality protein source for food, feed, and nutraceutical applications.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"61"},"PeriodicalIF":4.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信