Saptarshi Ghosh, Alex Hutagalung, Yuqian Gao, Javier E Flores, Yichao Han, Joonhoon Kim, Meagan C Burnet, Young-Mo Kim, Alberto Rodriguez
{"title":"Production of triacetic acid lactone from oleic acid by engineering the yeast Candida viswanathii.","authors":"Saptarshi Ghosh, Alex Hutagalung, Yuqian Gao, Javier E Flores, Yichao Han, Joonhoon Kim, Meagan C Burnet, Young-Mo Kim, Alberto Rodriguez","doi":"10.1186/s12934-025-02841-7","DOIUrl":null,"url":null,"abstract":"<p><p>Triacetic acid lactone (TAL) is a promising platform chemical to produce valuable compounds. The development of engineered microbial hosts to efficiently produce TAL from lipid-containing waste streams could be a cost-effective, sustainable and environmentally friendly approach to meet the industrial demand. In this study, we engineered the yeast Candida viswanathii, possessing robust fatty acid conversion capabilities, to develop an alternative route for TAL production from fatty acids that aims to maximize conversion of the acetyl-CoA pool generated by β-oxidation in the peroxisome. To do so, we inactivated the carnitine acetyltransferase gene to block the transport of acetyl-CoA out of the peroxisome and overexpressed the enzymes methylmalonyl-CoA carboxyltransferase, 2-pyrone synthase and pyruvate carboxylase in the peroxisome to convert acetyl-CoA into TAL. We also performed an adaptive laboratory evolution experiment to obtain mutants with higher growth rate in medium with oleic acid and observed marked differences in central carbon metabolism and organic acid production pathways between the evolved and parental strains. These strains were further engineered by integrating additional copies of TAL biosynthetic genes while reducing competing reactions like ω-oxidation and Lipid biosynthesis, resulting in up to 50-fold increase in titers relative to the initial strain, reaching 280 mg/L. This study contributes to the development of bioprocesses that valorize fatty acids as microbial conversion substrates for the production of valuable compounds.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"215"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12502205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02841-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Triacetic acid lactone (TAL) is a promising platform chemical to produce valuable compounds. The development of engineered microbial hosts to efficiently produce TAL from lipid-containing waste streams could be a cost-effective, sustainable and environmentally friendly approach to meet the industrial demand. In this study, we engineered the yeast Candida viswanathii, possessing robust fatty acid conversion capabilities, to develop an alternative route for TAL production from fatty acids that aims to maximize conversion of the acetyl-CoA pool generated by β-oxidation in the peroxisome. To do so, we inactivated the carnitine acetyltransferase gene to block the transport of acetyl-CoA out of the peroxisome and overexpressed the enzymes methylmalonyl-CoA carboxyltransferase, 2-pyrone synthase and pyruvate carboxylase in the peroxisome to convert acetyl-CoA into TAL. We also performed an adaptive laboratory evolution experiment to obtain mutants with higher growth rate in medium with oleic acid and observed marked differences in central carbon metabolism and organic acid production pathways between the evolved and parental strains. These strains were further engineered by integrating additional copies of TAL biosynthetic genes while reducing competing reactions like ω-oxidation and Lipid biosynthesis, resulting in up to 50-fold increase in titers relative to the initial strain, reaching 280 mg/L. This study contributes to the development of bioprocesses that valorize fatty acids as microbial conversion substrates for the production of valuable compounds.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems