Christopher Ibenegbu, William B Zimmerman, Michael Hines, Pratik D Desai, H C Hemaka Bandulasena, David J Leak
{"title":"原位微泡气提法降低热葡萄糖苷副杆菌连续高效乙醇发酵的毒性。","authors":"Christopher Ibenegbu, William B Zimmerman, Michael Hines, Pratik D Desai, H C Hemaka Bandulasena, David J Leak","doi":"10.1186/s12934-025-02754-5","DOIUrl":null,"url":null,"abstract":"<p><p>Ethanol concentrations above 4% (v/v) are required for economic bioethanol production due to the cost of recovery from dilute solutions. Although thermophilic bacteria have many potential advantages over Saccharomyces cerevisiae as process organisms for second generation bioethanol production, they are known to be less tolerant to ethanol, typically to concentrations less than 4% (v/v). To address this issue we have investigated the application of in situ gas-stripping of ethanol using microbubbles to increase the surface area per unit volume of gas, using fed-batch and continuous cultures of the engineered ethanologenic thermophile Parageobacillus thermoglucosidasius TM242. By using microbubbles generated at room temperature using a Desai-Zimmerman Fluid Oscillator, we initially operated a mixed batch and fed-batch fermentation, followed by a continuous fermentation and finally a chemostat fermentation, under conditions which would have generated in excess of 4% (v/v) ethanol. In all cases, gas stripping maintained the actual dissolved ethanol concentration below, or close to toxic levels. As the focus of this study was on demonstrating the efficiency of in situ microbubble gas stripping, to simplify the operation the latter two processes involved a combination of produced and supplemented ethanol, with the chemostat culture producing a nominal maximum 7.1% v/v based on glucose used (5.1-5.3% (v/v) based on ethanol recovered). This offers a practical way to produce second generation bio-ethanol from thermophiles.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"137"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177972/pdf/","citationCount":"0","resultStr":"{\"title\":\"Toxicity reduction in continuous, high productivity ethanol fermentation by Parageobacillus thermoglucosidasius using in situ microbubble gas stripping.\",\"authors\":\"Christopher Ibenegbu, William B Zimmerman, Michael Hines, Pratik D Desai, H C Hemaka Bandulasena, David J Leak\",\"doi\":\"10.1186/s12934-025-02754-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ethanol concentrations above 4% (v/v) are required for economic bioethanol production due to the cost of recovery from dilute solutions. Although thermophilic bacteria have many potential advantages over Saccharomyces cerevisiae as process organisms for second generation bioethanol production, they are known to be less tolerant to ethanol, typically to concentrations less than 4% (v/v). To address this issue we have investigated the application of in situ gas-stripping of ethanol using microbubbles to increase the surface area per unit volume of gas, using fed-batch and continuous cultures of the engineered ethanologenic thermophile Parageobacillus thermoglucosidasius TM242. By using microbubbles generated at room temperature using a Desai-Zimmerman Fluid Oscillator, we initially operated a mixed batch and fed-batch fermentation, followed by a continuous fermentation and finally a chemostat fermentation, under conditions which would have generated in excess of 4% (v/v) ethanol. In all cases, gas stripping maintained the actual dissolved ethanol concentration below, or close to toxic levels. As the focus of this study was on demonstrating the efficiency of in situ microbubble gas stripping, to simplify the operation the latter two processes involved a combination of produced and supplemented ethanol, with the chemostat culture producing a nominal maximum 7.1% v/v based on glucose used (5.1-5.3% (v/v) based on ethanol recovered). This offers a practical way to produce second generation bio-ethanol from thermophiles.</p>\",\"PeriodicalId\":18582,\"journal\":{\"name\":\"Microbial Cell Factories\",\"volume\":\"24 1\",\"pages\":\"137\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177972/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell Factories\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12934-025-02754-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02754-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Toxicity reduction in continuous, high productivity ethanol fermentation by Parageobacillus thermoglucosidasius using in situ microbubble gas stripping.
Ethanol concentrations above 4% (v/v) are required for economic bioethanol production due to the cost of recovery from dilute solutions. Although thermophilic bacteria have many potential advantages over Saccharomyces cerevisiae as process organisms for second generation bioethanol production, they are known to be less tolerant to ethanol, typically to concentrations less than 4% (v/v). To address this issue we have investigated the application of in situ gas-stripping of ethanol using microbubbles to increase the surface area per unit volume of gas, using fed-batch and continuous cultures of the engineered ethanologenic thermophile Parageobacillus thermoglucosidasius TM242. By using microbubbles generated at room temperature using a Desai-Zimmerman Fluid Oscillator, we initially operated a mixed batch and fed-batch fermentation, followed by a continuous fermentation and finally a chemostat fermentation, under conditions which would have generated in excess of 4% (v/v) ethanol. In all cases, gas stripping maintained the actual dissolved ethanol concentration below, or close to toxic levels. As the focus of this study was on demonstrating the efficiency of in situ microbubble gas stripping, to simplify the operation the latter two processes involved a combination of produced and supplemented ethanol, with the chemostat culture producing a nominal maximum 7.1% v/v based on glucose used (5.1-5.3% (v/v) based on ethanol recovered). This offers a practical way to produce second generation bio-ethanol from thermophiles.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems