Microbiological research最新文献

筛选
英文 中文
A bud's life: Metabarcoding analysis to characterise hazelnut big buds microbiome biodiversity 花蕾的一生:通过代谢编码分析确定榛子大花蕾微生物群生物多样性的特征
IF 6.1 1区 生物学
Microbiological research Pub Date : 2024-07-24 DOI: 10.1016/j.micres.2024.127851
Silvia Turco , Federico Brugneti , Irene Giubilei , Cristian Silvestri , Miloš Petrović , Mounira Inas Drais , Valerio Cristofori , Stefano Speranza , Angelo Mazzaglia , Mario Contarini , Luca Rossini
{"title":"A bud's life: Metabarcoding analysis to characterise hazelnut big buds microbiome biodiversity","authors":"Silvia Turco ,&nbsp;Federico Brugneti ,&nbsp;Irene Giubilei ,&nbsp;Cristian Silvestri ,&nbsp;Miloš Petrović ,&nbsp;Mounira Inas Drais ,&nbsp;Valerio Cristofori ,&nbsp;Stefano Speranza ,&nbsp;Angelo Mazzaglia ,&nbsp;Mario Contarini ,&nbsp;Luca Rossini","doi":"10.1016/j.micres.2024.127851","DOIUrl":"10.1016/j.micres.2024.127851","url":null,"abstract":"<div><p>Despite <em>Corylus avellana</em> L. being an economically important shrub species known for its resilience to adverse environmental conditions, it constantly faces attacks from a plethora of biotic entities. Among these, the mite pest <em>Phytoptus avellanae</em> is gaining importance, causing economic losses every year. This mite colonises the new generative and vegetative buds, leading them to become swollen and reddish, and drastically reducing hazelnut production. The biology behind gall formation is still poorly understood. This study provides a qualitative and quantitative description of the microbiome in both healthy and infested buds of two economically important hazelnut cultivars through metabarcoding of fungal ITS and bacterial 16 S. Potentially pathogenic genera such as <em>Fusarium</em> and <em>Pseudomonas</em> were predominant in the infested buds, along with the obligate intracellular bacterial genus <em>Wolbachia. Akanthomyces muscarius</em> was instead isolated from culture-based methods only from the infested buds. These findings could improve the understanding of gall ecology, supporting the management of mite populations, and they could also serve as a milestone for further studies on low-impact, monitoring-driven, and genetically targeted control strategies.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944501324002520/pdfft?md5=b98ddf6fcafeaa1a675a920637c9c53d&pid=1-s2.0-S0944501324002520-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacillus paralicheniformis, an acetate-producing probiotic, alleviates ulcerative colitis via protecting the intestinal barrier and regulating the NLRP3 inflammasome 副坏死性芽孢杆菌是一种能产生醋酸盐的益生菌,它能通过保护肠道屏障和调节 NLRP3 炎症小体来缓解溃疡性结肠炎
IF 6.1 1区 生物学
Microbiological research Pub Date : 2024-07-23 DOI: 10.1016/j.micres.2024.127856
Nini Dai , Xinting Yang , Peilong Pan , Guanghui Zhang , Kangliang Sheng , Jingmin Wang , Xiao Liang , Yongzhong Wang
{"title":"Bacillus paralicheniformis, an acetate-producing probiotic, alleviates ulcerative colitis via protecting the intestinal barrier and regulating the NLRP3 inflammasome","authors":"Nini Dai ,&nbsp;Xinting Yang ,&nbsp;Peilong Pan ,&nbsp;Guanghui Zhang ,&nbsp;Kangliang Sheng ,&nbsp;Jingmin Wang ,&nbsp;Xiao Liang ,&nbsp;Yongzhong Wang","doi":"10.1016/j.micres.2024.127856","DOIUrl":"10.1016/j.micres.2024.127856","url":null,"abstract":"<div><p>Ulcerative colitis (UC) presents a challenging scenario in digestive health, characterized by recurrent inflammation that is often hard to manage. Bacteria capable of producing short-chain fatty acids (SCFAs) play a pivotal role in mitigating UC symptoms, rendering them promising candidates for probiotic therapy. In this investigation, we assessed the impact of <em>Bacillus paralicheniformis</em> HMPM220325 on dextran sodium sulfate (DSS)-induced UC in mice. Genomic analysis of the strain revealed the presence of protease genes associated with acetate and butyrate synthesis, with acetic acid detected in its fermentation broth. Administration of <em>B. paralicheniformis</em> HMPM220325 to UC mice ameliorated pathological manifestations of the condition and restored intestinal barrier function. Furthermore, <em>B. paralicheniformis</em> HMPM220325 suppressed the activation of the NLRP3 inflammasome signaling pathway and modulated the composition of the intestinal microbiota. These findings shed significant light on the potential of <em>B. paralicheniformis</em> as a probiotic candidate, offering a novel avenue for the prevention and therapeutic intervention of colitis.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular and eco-physiological responses of soil-borne lead (Pb2+)-resistant bacteria for bioremediation and plant growth promotion under lead stress 抗土壤中铅(Pb2+)细菌在铅胁迫下进行生物修复和促进植物生长的分子和生态生理反应
IF 6.1 1区 生物学
Microbiological research Pub Date : 2024-07-22 DOI: 10.1016/j.micres.2024.127831
Priyanka Pal , Krishnendu Pramanik , Sudip Kumar Ghosh , Sayanta Mondal , Tanushree Mondal , Tithi Soren , Tushar Kanti Maiti
{"title":"Molecular and eco-physiological responses of soil-borne lead (Pb2+)-resistant bacteria for bioremediation and plant growth promotion under lead stress","authors":"Priyanka Pal ,&nbsp;Krishnendu Pramanik ,&nbsp;Sudip Kumar Ghosh ,&nbsp;Sayanta Mondal ,&nbsp;Tanushree Mondal ,&nbsp;Tithi Soren ,&nbsp;Tushar Kanti Maiti","doi":"10.1016/j.micres.2024.127831","DOIUrl":"10.1016/j.micres.2024.127831","url":null,"abstract":"<div><p>Lead (Pb) is the 2<sup>nd</sup> known portentous hazardous substance after arsenic (As). Being highly noxious, widespread, non-biodegradable, prolonged environmental presence, and increasing accumulation, particularly in arable land, Pb pollution has become a serious global health concern requiring urgent remediation. Soil-borne, indigenous microbes from Pb-polluted sites have evolved diverse resistance strategies, involving biosorption, bioprecipitation, biomineralization, biotransformation, and efflux mechanisms, under continuous exposure to Pb in human-impacted surroundings. These strategies employ a wide range of functional bioligands to capture Pb and render it inaccessible for leaching. Recent breakthroughs in molecular technology and understanding of lead resistance mechanisms offer the potential for utilizing microbes as biological tools in environmental risk assessment. Leveraging the specific affinity and sensitivity of bacterial regulators to Pb<sup>2+</sup> ions, numerous lead biosensors have been designed and deployed worldwide to monitor Pb bioavailability in contaminated sites, even at trace levels. Besides, the ongoing degradation of croplands due to Pb pollution poses a significant challenge to meet the escalating global food demands. The accumulation of Pb in plant tissues jeopardizes both food safety and security while severely impacting plant growth. Exploring Pb-resistant plant growth-promoting rhizobacteria (PGPR) presents a promising sustainable approach to agricultural practices. The active associations of PGPR with host plants have shown enhancements in plant biomass and stress alleviation under Pb influence. They thus serve a dual purpose for plants grown in Pb-contaminated areas. This review aims to offer a comprehensive understanding of the role played by Pb-resistant soil-borne indigenous bacteria in expediting bioremediation and improving the growth of Pb-challenged plants essential for potential field application, thus broadening prospects for future research and development.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Berberine ameliorates vascular dysfunction by downregulating TMAO-endoplasmic reticulum stress pathway via gut microbiota in hypertension 小檗碱通过肠道微生物群下调 TMAO-内质网应激途径改善高血压患者的血管功能障碍
IF 6.1 1区 生物学
Microbiological research Pub Date : 2024-07-20 DOI: 10.1016/j.micres.2024.127824
Zhichao Wang , Yijia Shao , Fang Wu , Dangu Luo , Guoyifan He , Jianwen Liang , Xiaoqing Quan , Xiehui Chen , Wenhao Xia , Ye Chen , Yue Liu , Long Chen
{"title":"Berberine ameliorates vascular dysfunction by downregulating TMAO-endoplasmic reticulum stress pathway via gut microbiota in hypertension","authors":"Zhichao Wang ,&nbsp;Yijia Shao ,&nbsp;Fang Wu ,&nbsp;Dangu Luo ,&nbsp;Guoyifan He ,&nbsp;Jianwen Liang ,&nbsp;Xiaoqing Quan ,&nbsp;Xiehui Chen ,&nbsp;Wenhao Xia ,&nbsp;Ye Chen ,&nbsp;Yue Liu ,&nbsp;Long Chen","doi":"10.1016/j.micres.2024.127824","DOIUrl":"10.1016/j.micres.2024.127824","url":null,"abstract":"<div><p>The gut microbial metabolite trimethylamine N-oxide (TMAO) is regarded as a novel risk factor for hypertension. Berberine (BBR) exerts cardiovascular protective effects by regulating the gut microbiota-metabolite production pathway. However, whether and how BBR alleviates TMAO-induced vascular dysfunction in hypertension remains unclear. In the present study, we observed that plasma TMAO and related bacterial abundance were significantly elevated and negatively correlated with vascular function in 86 hypertensive patients compared with 46 normotensive controls. TMAO activated endoplasmic reticulum stress (ERS) signaling pathway to promote endothelial cell dysfunction and apoptosis in vitro. BBR (100, 200 mg · kg<sup>−1</sup> ·d<sup>−1</sup>) for 4 weeks ameliorates TMAO-induced vascular dysfunction and ERS activation in a choline-angiotensin II hypertensive mouse model. We found that plasma TMAO levels in 15 hypertensive patients treated with BBR (0.4 g, tid) were reduced by 8.8 % and 16.7 % at months 1 and 3, respectively, compared with pretreatment baseline. The oral BBR treatment also improved vascular function and lowered blood pressure. Faecal 16 S rDNA showed that BBR altered the gut bacterial composition and reduced the abundance of CutC/D bacteria in hypertensive mice and patients. In vitro bacterial cultures and enzyme reaction systems indicated that BBR inhibited the biosynthesis of TMAO precursor in the gut microbiota by binding to and inhibiting the activity of CutC/D enzyme. Our results indicate that BBR improve vascular dysfunction at least partially by decreasing TMAO via regulation of the gut microbiota in hypertension.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944501324002258/pdfft?md5=48f3c1de219da59376433e3d27a0e957&pid=1-s2.0-S0944501324002258-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small RNA-regulated expression of efflux pump affects tigecycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae 小核糖核酸调控的外排泵表达影响肺炎克雷伯氏菌临床分离株对替加环素的耐药性和异抗性。
IF 6.1 1区 生物学
Microbiological research Pub Date : 2024-07-20 DOI: 10.1016/j.micres.2024.127825
Yuqiao Han , Yilin Xiong , Mengyao Wang , Jia Wang , Tao Song , Jing Yu , Jia Hu , Zinan Zhao , Ming Li , Ying Li , Yang Chen
{"title":"Small RNA-regulated expression of efflux pump affects tigecycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae","authors":"Yuqiao Han ,&nbsp;Yilin Xiong ,&nbsp;Mengyao Wang ,&nbsp;Jia Wang ,&nbsp;Tao Song ,&nbsp;Jing Yu ,&nbsp;Jia Hu ,&nbsp;Zinan Zhao ,&nbsp;Ming Li ,&nbsp;Ying Li ,&nbsp;Yang Chen","doi":"10.1016/j.micres.2024.127825","DOIUrl":"10.1016/j.micres.2024.127825","url":null,"abstract":"<div><p>Tigecycline and the newly Food and Drug Administration-approved tetracyclines, including eravacycline and omadacycline, are regarded as last-resort treatments for multidrug-resistant Enterobacterales<em>.</em> However, tigecycline resistance in <em>Klebsiella pneumoniae</em> has increased, especially the underlying mechanism of heteroresistance is unclear. This study aimed to elucidate the mechanisms underlying tigecycline resistance and heteroresistance in clinical <em>K. pneumoniae</em> isolates. A total of 153 clinical <em>K. pneumoniae</em> isolates were collected, and identified 15 tigecycline-resistant and three tigecycline-heteroresistant isolates using broth microdilution and population analysis profile methods, respectively. Total RNAs from <em>K. pneumoniae</em> ATCC13883 and the laboratory-induced tigecycline-resistant strain were extracted and sequenced on an Illumina platform. Differentially expressed genes and regulatory small RNAs (sRNAs) were analyzed and validated in clinical isolates of <em>K. pneumoniae</em> using quantitative real-time PCR. RNA sequencing results showed that <em>mdtABC</em> efflux pump genes were significantly upregulated in the tigecycline-resistant strains. Overexpression of <em>mdtABC</em> was observed in a clinical <em>K. pneumoniae</em> isolate, which increased tigecycline minimum inhibitory concentrations (MICs) and was involved in tigecycline heteroresistance. Sequencing analysis of sRNA demonstrated that candidate sRNA-120 directly interacted with the <em>mdtABC</em> operon and was downregulated in tigecycline-resistant strains. We generated an sRNA-120 deletion mutation strain and a complemented strain of <em>K. pneumoniae.</em> The sRNA-120 deletion strain displayed increased mRNA levels of <em>mdtA, mdtB,</em> and <em>mdtC</em> and an increase in MICs of tigecycline. The complemented strain of sRNA-120 restored the mRNA levels of these genes and the susceptibility to tigecycline. RNA antisense purification and parallel reaction monitoring mass spectrometry were performed to verify the interactions between sRNA-120 and <em>mdtABC</em>. Collectively, our study highlights that the post-transcriptional repression of <em>mdtABC</em> through sRNA-120 may provide an additional layer of efflux pump gene expression control, which is important for resistance and heteroresistance in clinical <em>K. pneumoniae</em> isolates.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sphingomonas sp. Hbc-6 alters Arabidopsis metabolites to improve plant growth and drought resistance by manipulating the microbiome 拟南芥鞘氨单胞菌 Hbc-6 通过操纵微生物组改变拟南芥代谢物,从而改善植物生长和抗旱性
IF 6.1 1区 生物学
Microbiological research Pub Date : 2024-07-18 DOI: 10.1016/j.micres.2024.127852
Fang Wang , Mingyue Jia , Kun Li , Yafang Cui , Lizhe An , Hongmei Sheng
{"title":"Sphingomonas sp. Hbc-6 alters Arabidopsis metabolites to improve plant growth and drought resistance by manipulating the microbiome","authors":"Fang Wang ,&nbsp;Mingyue Jia ,&nbsp;Kun Li ,&nbsp;Yafang Cui ,&nbsp;Lizhe An ,&nbsp;Hongmei Sheng","doi":"10.1016/j.micres.2024.127852","DOIUrl":"10.1016/j.micres.2024.127852","url":null,"abstract":"<div><p>Drought significantly affects crop productivity and poses a considerable threat to agricultural ecosystems. Plant growth-promoting bacteria (PGPB) and plant microbiome play important roles in improving drought resistance and plant performance. However, the response of the rhizosphere microbiota to PGPB during the development of plants and the interaction between inoculum, microbiota, and plants under drought stress remain to be explored. In the present study, we used culturomic, microbiomic, and metabonomic analyses to uncover the mechanisms by which <em>Sphingomonas</em> sp. Hbc-6, a PGPB, promotes <em>Arabidopsis</em> growth and enhances drought resistance. We found that the rhizosphere microbiome assembly was interactively influenced by developmental stage, Hbc-6, and drought; the bacterial composition exhibited three patterns of shifts with developmental stage: resilience, increase, and decrease. Drought diminished microbial diversity and richness, whereas Hbc-6 increased microbial diversity and helped plants recruit specific beneficial bacterial taxa at each developmental stage, particularly during the bolting stage. Some microorganisms enriched by Hbc-6 had the potential to promote carbon and nitrogen cycling processes, and 86.79 % of the isolated strains exhibited PGP characteristics (for example <em>Pseudomonas</em> sp. TA9). They jointly regulated plant physiological metabolism (i.e., upregulated drought resistant-facilitating substances and reduced harmful substances), thereby stimulating the growth of <em>Arabidopsis</em> and increasing plant biomass under drought stress conditions. Collectively, these results indicate that Hbc-6 mediates plant growth and drought resistance by affecting the microbiome. The study thus provides novel insights and strain resources for drought-resistant, high-yielding crop cultivation and breeding.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141853184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the journey: A comprehensive review of vaccine development against Klebsiella pneumoniae 探索之旅:肺炎克雷伯氏菌疫苗研发综述。
IF 6.1 1区 生物学
Microbiological research Pub Date : 2024-07-18 DOI: 10.1016/j.micres.2024.127837
Bruno Douradinha
{"title":"Exploring the journey: A comprehensive review of vaccine development against Klebsiella pneumoniae","authors":"Bruno Douradinha","doi":"10.1016/j.micres.2024.127837","DOIUrl":"10.1016/j.micres.2024.127837","url":null,"abstract":"<div><p><em>Klebsiella pneumoniae</em>, a prominent nosocomial pathogen, poses a critical global health threat due to its multidrug-resistant (MDR) and hypervirulent strains. This comprehensive review focuses into the complex approaches undertaken in the development of vaccines against <em>K. pneumoniae</em>. Traditional methods, such as whole-cell and ribosomal-based vaccines, are compared with modern strategies, including DNA and mRNA vaccines, and extracellular vesicles (EVs), among others. Each method presents unique advantages and challenges, emphasising the complexity of developing an effective vaccine against this pathogen. Significant advancements in computational tools and artificial intelligence (AI) have revolutionised antigen identification and vaccine design, enhancing the precision and efficiency of developing multiepitope-based vaccines. The review also highlights the potential of glycomics and immunoinformatics in identifying key antigenic components and elucidating immune evasion mechanisms employed by <em>K. pneumoniae</em>. Despite progress, challenges remain in ensuring the safety, efficacy, and manufacturability of these vaccines. Notably, EVs demonstrate promise due to their intrinsic adjuvant properties and ability to elicit robust immune responses, although concerns regarding inflammation and antigen variability persist. This review provides a critical overview of the current landscape of <em>K. pneumoniae</em> vaccine development, stressing the need for continued innovation and interdisciplinary collaboration to address this pressing public health issue. The integration of advanced computational methods and AI holds the potential to accelerate the development of effective immunotherapies, paving the way for novel vaccines against MDR <em>K. pneumoniae</em>.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibiotic adjuvants against multidrug-resistant Gram-negative bacteria: important component of future antimicrobial therapy 抗多重耐药革兰氏阴性菌的抗生素佐剂:未来抗菌疗法的重要组成部分
IF 6.1 1区 生物学
Microbiological research Pub Date : 2024-07-18 DOI: 10.1016/j.micres.2024.127842
Wenwen Li, Zhen Tao, Motan Zhou, Huilin Jiang, Liudi Wang, Bingjie Ji, Yongshan Zhao
{"title":"Antibiotic adjuvants against multidrug-resistant Gram-negative bacteria: important component of future antimicrobial therapy","authors":"Wenwen Li,&nbsp;Zhen Tao,&nbsp;Motan Zhou,&nbsp;Huilin Jiang,&nbsp;Liudi Wang,&nbsp;Bingjie Ji,&nbsp;Yongshan Zhao","doi":"10.1016/j.micres.2024.127842","DOIUrl":"10.1016/j.micres.2024.127842","url":null,"abstract":"<div><p>The swift emergence and propagation of multidrug-resistant (MDR) bacterial pathogens constitute a tremendous global health crisis. Among these pathogens, the challenge of antibiotic resistance in Gram-negative bacteria is particularly pressing due to their distinctive structure, such as highly impermeable outer membrane, overexpressed efflux pumps, and mutations. Several strategies have been documented to combat MDR Gram-negative bacteria, including the structural modification of existing antibiotics, the development of antimicrobial adjuvants, and research on novel targets that MDR bacteria are sensitive to. Drugs functioning as adjuvants to mitigate resistance to existing antibiotics may play a pivotal role in future antibacterial therapy strategies. In this review, we provide a brief overview of potential antibacterial adjuvants against Gram-negative bacteria and their mechanisms of action, and discuss the application prospects and potential for bacterial resistance to these adjuvants, along with strategies to reduce this risk.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141729230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription factor AbrB regulates ROS generation and clearance in Bacillus licheniformis 转录因子 AbrB 调节地衣芽孢杆菌中 ROS 的生成和清除
IF 6.1 1区 生物学
Microbiological research Pub Date : 2024-07-17 DOI: 10.1016/j.micres.2024.127843
Penghui He , Shiying Hu , Yongjia Zhang , Zhengwei Xiang , Anting Zhu , Shouwen Chen
{"title":"Transcription factor AbrB regulates ROS generation and clearance in Bacillus licheniformis","authors":"Penghui He ,&nbsp;Shiying Hu ,&nbsp;Yongjia Zhang ,&nbsp;Zhengwei Xiang ,&nbsp;Anting Zhu ,&nbsp;Shouwen Chen","doi":"10.1016/j.micres.2024.127843","DOIUrl":"10.1016/j.micres.2024.127843","url":null,"abstract":"<div><p>Oxidative damage caused by the accumulation of reactive oxygen species (ROS) is one of the main obstacles to the improvement of microbial cell growth and fermentation characteristics under adverse environments. And the antioxidant capacity of cells will increase with the cell growth. Here, we found that a transition state transcription factor AbrB related to changes in cell growth status could regulate the accumulation of ROS and antioxidant capacity in <em>Bacillus licheniformis</em>. The results showed that the accumulation of intracellular ROS was reduced by 23.91 % and the cell survival rates were increased by 1.77-fold under 0.5 mM H<sub>2</sub>O<sub>2</sub> when AbrB was knocked out. We further mapped regulatory target genes of AbrB related to ROS generation or clearance based on our previously analyzed transcriptome sequencing. It proved that AbrB could promote ROS generation via upregulating the synthesis of oxidase and siderophores, and negatively regulating the synthesis of iron chelators (pulcherriminic acid, and H<sub>2</sub>S). Additionally, AbrB could inhibit ROS clearance by negatively regulating the synthesis of antioxidase (superoxide dismutase, catalase, peroxidase, thioredoxin, thioredoxin reductase) and cysteine. Those results illustrated that the inactivation of AbrB during the stationary phase, along with its control over ROS generation and clearance, might represent a vital self-protection mechanism during cell evolution. Overall, the systematic investigation of the multi-pathway regulation network of ROS generation and clearance highlights the important function of AbrB in maintaining intracellular redox balance.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review on biological funnel mechanism in lignin valorization: Pathways and enzyme dynamics 全面回顾木质素价值化的生物漏斗机制:途径和酶动力学
IF 6.1 1区 生物学
Microbiological research Pub Date : 2024-07-17 DOI: 10.1016/j.micres.2024.127835
Jiayue Gao , Mohamed Yassin Ali , Yoganathan Kamaraj , Zhenghao Zhang , Li Weike , Sivasamy Sethupathy , Daochen Zhu
{"title":"A comprehensive review on biological funnel mechanism in lignin valorization: Pathways and enzyme dynamics","authors":"Jiayue Gao ,&nbsp;Mohamed Yassin Ali ,&nbsp;Yoganathan Kamaraj ,&nbsp;Zhenghao Zhang ,&nbsp;Li Weike ,&nbsp;Sivasamy Sethupathy ,&nbsp;Daochen Zhu","doi":"10.1016/j.micres.2024.127835","DOIUrl":"10.1016/j.micres.2024.127835","url":null,"abstract":"<div><p>Lignin, a significant byproduct of the paper and pulp industry, is attracting interest due to its potential utilization in biomaterial-based sectors and biofuel production. Investigating biological methods for converting lignin into valuable products is crucial for effective utilization and has recently gained growing attention. Several microorganisms effectively decomposed low molecular weight lignins, transforming them into intermediate compounds via upper and lower metabolic pathways. This review focuses on assessing bacterial metabolic pathways involved in the breakdown of lignin into aromatic compounds and their subsequent utilization by different bacteria through various metabolic pathways. Understanding these pathways is essential for developing efficient synthetic metabolic systems to valorize lignin and obtain valuable industrial aromatic chemicals. The concept of \"biological funneling,\" which involves examining key enzymes, their interactions, and the complex metabolic pathways associated with lignin conversion, is crucial in lignin valorization. By manipulating lignin metabolic pathways and utilizing biological routes, many aromatic compounds can be synthesized within cellular factories. Although there is insufficient evidence regarding the complete metabolism of polyaromatic hydrocarbons by particular microorganisms, understanding lignin-degrading enzymes, regulatory mechanisms, and interactions among various enzyme systems is essential for optimizing lignin valorization. This review highlights recent advancements in lignin valorization, bio-funneling, multi-omics, and analytical characterization approaches for aromatic utilization. It provides up-to-date information and insights into the latest research findings and technological innovations. The review offers valuable insights into the future potential of biological routes for lignin valorization.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141729229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信