{"title":"Soybean domestication alters rhizosphere microbial assembly and disrupts the potential bacteria-protist relationships.","authors":"Shaoguan Zhao, Chen Liu, Ying Yuan, Qingyun Zhao, Zhiyang Zhang, Xiangyu Ren, Yang Yue, Shuo Sun, Shiqi Sun, Qi Zhang, Guangnan Xing, Ming Wang, Wu Xiong, Qirong Shen","doi":"10.1016/j.micres.2025.128295","DOIUrl":"10.1016/j.micres.2025.128295","url":null,"abstract":"<p><p>Crop domestication has long been known to reshape rhizosphere microbial communities, yet research has focused disproprotionately on bacteria and fungal responses to crop domestication while neglecting protist communities. Protists, as key microbial predators regulating bacterial populations and thereby their functionalities, remain understudied in this context. Here, we investigate the influence of soybean domestication on both bacterial and protist communities, with a focus on the reorganization of ecological strategies, specifically generalists and specialists, within these microbiomes. We analyzed 270 rhizosphere samples from 27 domesticated and 63 wild soybean varieties. Domestication significantly altered community compositions of bacterial communities, with wild soybeans harboring higher proprotions of Pseudomonadota (71.4 %) and Bacillota (4.8 %), while domesticated soybeans exhibited an enrichment of Bacteroidota (11.0 %). Protist communities also diverged: wild soybeans were dominated by Cercozoa (58.2 %) and Gyrista (23.5 %), while domesticated plants had more Ciliophora (7.1 %) and Evosea (5.7 %). Domesticated soybeans hosted fewer generalist and specialist bacteria but more generalist protists, suggesting divergent microbial responses to domestication. Correlation analyses revealed that bacterial and protist generalists exhibited strong positive correlations with each other. At the same time, bacterial and protist specialists also showed positive correlations in wild soybeans-patterns that were largely absent in their domesticated counterparts. Functionally, wild soybeans supported more ureolytic and methylotrophic bacteria, while domesticated soybeans favored nitrate-respiration taxa. Notably, predatory protists in wild soybeans were significantly correlated with bacteria involved in carbon and nitrogen cycling, a key ecological relationship lost with domestication. These findings suggest that domestication exerts different selection pressures on bacteria and protists, disrupting potential relationships between bacterial and protist functional groups.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"301 ","pages":"128295"},"PeriodicalIF":6.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144812125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pseudomonas fluorescens P34 colonization impacts expression changes in wheat roots, reshapes rhizosphere microbial communities and promotes wheat plant growth.","authors":"Wenfeng Ai, Yanping Qiu, Jiajia Hua, Zixuan Chen, Wei Cheng, Yiping Chen, Shengxian Zhang, Yuanyuan Xue, Sha Li, Run Hong, Ruijie Dong, Yuanyuan Cao","doi":"10.1016/j.micres.2025.128306","DOIUrl":"10.1016/j.micres.2025.128306","url":null,"abstract":"<p><p>Plant growth-promoting rhizobacteria (PGPR) can stimulate crop growth and performance through multiple mechanisms, making them promising bioinoculants for sustainable agriculture. Among known PGPR species, Pseudomonas fluorescens has attracted considerable attention because of its superior growth-promoting mechanisms and broad adaptability. Although P. fluorescens P34 has excellent colonization and growth-promoting abilities, the molecular and ecological mechanisms underlying its growth-promoting effects remain poorly understood. Here, we conducted a 25-day pot experiment utilizing an integrated approach combining transcriptomics and microbial amplicon sequencing to investigate how P. fluorescens P34 influences wheat gene expression profiles and the response of the indigenous rhizosphere microbial community to P34 colonization. P34 application increased the seedling fresh weight, seedling dry weight, root fresh weight, root dry weight, phosphorus content, nitrogen content in wheat leaves and available phosphorus content in rhizosphere soil by 39.61 %, 29.67 %, 84.07 %, 64.71 %, 43.05 %, 17.79 % and 14.45 %, respectively, while it increased the length, projected area and number of forks of the wheat root system by 17.35 %, 35.87 % and 23.57 %, respectively. RNA sequencing revealed 3166 differentially expressed genes that were predominantly involved in nitrogen and phosphorus transport, carbohydrate metabolism, phytohormone biosynthesis and transport, and plantmicrobe signaling recognition. Moreover, microbial community dynamic modulation demonstrated that strain P34 induced shifts in the indigenous rhizosphere microbiome by enriching beneficial microorganisms (e.g., Massilia and Pseudomonas) while reducing potential pathogens. These findings revealed the molecular and ecological mechanisms underlying PGPR-mediated plant growth promotion, providing new insights for optimizing PGPR applications in sustainable agriculture and demonstrating its potential to reduce chemical fertilizer dependency while enhancing soil health in agroecosystems.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"301 ","pages":"128306"},"PeriodicalIF":6.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144812124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pheromone MAPK pathway regulates the yeast-to-hypha transition in the parasitic mushroom Naematelia sinensis in a cell fusion–independent manner","authors":"Ying Yang , Jiaqi Lu , Caihong Dong","doi":"10.1016/j.micres.2025.128374","DOIUrl":"10.1016/j.micres.2025.128374","url":null,"abstract":"<div><div><em>Naematelia sinensis</em> (Jin Er), a distinctive parasitic mushroom, relies on its interaction with <em>Stereum hirsutum</em> for fruiting body formation. The transition from yeast to hyphae is essential for its lifecycle, facilitating both parasitism and sexual reproduction. Under axenic conditions, however, it predominantly exists in the yeast form. This study established conditions that induce yeast-to-hypha transition and explored the underlying regulatory mechanisms. Hyphal induction was successfully achieved using a medium derived from mushroom spent substrate, with lactose significantly enhancing the transition. Hyphal formation occurred in heterokaryons or co-cultured monokaryons with different <em>B</em> mating-type loci, underscoring the crucial role of the <em>B</em> mating locus. Notably, hyphal development was observed even without physical contact between monokaryons of different <em>B</em> mating loci, suggesting that cell fusion is not a prerequisite and a diffusible signal likely mediates the transition. Genome resequencing revealed structural variations and sequence divergence at the <em>B</em> locus in compatible strains. Transcriptomic analysis revealed the pheromone MAPK pathway as the regulator of the transition, alongside a unique lactose metabolic pathway that diverges from the classical <em>Kluyveromyces</em> model. Lactose appears to function both as a carbon source and as a possible signaling molecule driving dimorphism. These findings provide new insights into the mechanisms of fungal dimorphism and lay a foundation for future research on fruiting body formation and parasitism in <em>N. sinensis</em>.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"303 ","pages":"Article 128374"},"PeriodicalIF":6.9,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145323194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yao He , Xingyi Long , Bing Dong , Yina Huang , Xueying Tao , Hua Wei
{"title":"Surface-layer proteins of Enterococcus faecium WEFA23 inhibit Listeria monocytogenes-induced inflammation via TLR2-mediated NF-κB and MAPK signalling in RAW 264.7 cells","authors":"Yao He , Xingyi Long , Bing Dong , Yina Huang , Xueying Tao , Hua Wei","doi":"10.1016/j.micres.2025.128373","DOIUrl":"10.1016/j.micres.2025.128373","url":null,"abstract":"<div><div><em>Listeria monocytogenes</em> infection, which has a higher mortality rate than other foodborne pathogens, is a major concern in global food safety. Among various interventions, lactic acid bacteria and their metabolites have gained significant attention. Our previous study showed that the surface layer proteins (SLPs) of <em>Enterococcus faecium</em> WEFA23, isolated from the gastrointestinal tract of newborn infants, exhibited strong inhibitory activity against <em>L. monocytogenes</em> CMCC57007; however, the underlying mechanism remained unclear. In this study, the immunomodulatory effects of <em>E. faecium</em> WEFA23 SLPs against <em>L. monocytogenes</em> infection were investigated in RAW 264.7 macrophage cells, focusing on phagocytic and bactericidal activity, as well as cytokine production. Furthermore, LC-MS/MS analysis indicated that ornithine carbamoyltransferase (OTC) could be a functional component of the SLPs. Consequently, <em>otc</em> gene knockout and heterologous expression strains were constructed. The results showed that deletion of the <em>otc</em> gene eliminated the inhibitory activity, while recombinant OTC maintained a satisfactory inhibitory effect. Mechanistically, both SLPs and purified OTC suppressed the activation of the NF-κB/MAPK signalling pathways, which were likely mediated through TLR2. Overall, our findings provide a scientific basis for the application of SLPs and <em>E. faecium</em> in food systems to prevent pathogenic infections.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"303 ","pages":"Article 128373"},"PeriodicalIF":6.9,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145323195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated metabolomic and transcriptomic analysis to elucidate the antifungal and antimycotoxin mechanisms of natural stilbenoids against Fusarium graminearum.","authors":"Trang Tran-Minh, Nadia Ponts, Stéphane Bernillon, Pierre Waffo-Téguo, Caroline Rouger, Florence Richard-Forget, Vessela Atanasova","doi":"10.1016/j.micres.2025.128370","DOIUrl":"https://doi.org/10.1016/j.micres.2025.128370","url":null,"abstract":"<p><p>Climate change is driving a rise in the contamination of crops by mycotoxins, threatening global food security. If agrochemical use is to be reduced, environmentally friendly antimycotoxin solutions are urgently needed. This study aims to elucidate the antifungal and antimycotoxin modes of action of stilbenoid molecules from vine by-product extracts against Fusarium graminearum, the primary causal agent of Fusarium head blight in wheat and a main producer of type B trichothecene (TCTB) mycotoxins. E-resveratrol (RES), a monomer, and E-vitisin B (VIT), a tetramer, were selected as the targeted stilbenoids due to their predominance in vine extracts. VIT (8 µM) showed greater efficacy than RES (35 µM) in inhibiting spore germination, biomass production, and TCTB yield. To better understand their modes of action, a multi-omics approach combining mRNA-seq-based transcriptomics and LC-MS/MS-based untargeted metabolomics was employed. mRNA-seq data evidenced that VIT exposure altered the expression of nearly half of F. graminearum genes, whereas RES induced only minimal transcriptomic changes. Integrated with metabolomics data, our findings suggest that VIT's modes of action involves: (1) disruption of the fungal cell wall and plasma membrane via downregulation of sphingolipid metabolism, (2) inhibition of sporulation and hyphal growth, and (3) both direct and indirect interference with TCTB biosynthesis. These findings support the potential of viniculture waste-derived compounds as biofungicides, offering a dual benefit of reducing cereal mycotoxin contamination and valorising underused vine biomass.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"303 ","pages":"128370"},"PeriodicalIF":6.9,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145355234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yilin Sun , Pengcheng Wang , Yidan Chai , Ru Song , Ming Cheng , Jingrrong Gao , Luminita Duma , Yannick Rossez , Xiaoyu Zou , Ye Tao , Huicheng Yang
{"title":"Targeting bacterial motility: Prospective therapeutic countermeasures","authors":"Yilin Sun , Pengcheng Wang , Yidan Chai , Ru Song , Ming Cheng , Jingrrong Gao , Luminita Duma , Yannick Rossez , Xiaoyu Zou , Ye Tao , Huicheng Yang","doi":"10.1016/j.micres.2025.128369","DOIUrl":"10.1016/j.micres.2025.128369","url":null,"abstract":"<div><div>Microorganisms have developed several motility types regulated by environmental conditions in host colonization to support transmission and virulence. Targeting motility is a promising antivirulence strategy. Herein, the current and developing countermeasures targeting filament-based and gliding/sliding motility mechanisms, including assembly, structure, and secretion, are reviewed. Additionally, indirect strategies that influence motility, including targeting c-di-GMP signaling, quorum sensing, and the two-component system, are described. Biological interference with metabolites and bacteriophage, as well as the promising strategies are also addressed in the review. The limitation and challenges of antimotility interventions are critically analysed. Overall, targeting motility represents a novel antivirulence paradigm to disarm pathogens while minimizing selective pressure for resistance, pointing to a promising direction for future combination therapies.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"303 ","pages":"Article 128369"},"PeriodicalIF":6.9,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145289927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adrian Wallner , Utkarsh Talukdar , Aurélie Deveau , Julia Buchner , Deepak Kumar , Pooja Shukla , Stéphane Compant , Satish K. Verma
{"title":"Endofungal bacteria: Emerging paradigms and future directions","authors":"Adrian Wallner , Utkarsh Talukdar , Aurélie Deveau , Julia Buchner , Deepak Kumar , Pooja Shukla , Stéphane Compant , Satish K. Verma","doi":"10.1016/j.micres.2025.128361","DOIUrl":"10.1016/j.micres.2025.128361","url":null,"abstract":"<div><div>The colonization of fungal hyphae and spores by bacteria represents a widespread phenomenon with significant ecological and biotechnological implications across all surveyed fungal phyla. First thought to be restricted to <em>Mollicutes</em> and <em>Burkholderiaceae</em>-Related Endobacteria, these endofungal associations exhibit remarkable diversity, from simple uniform populations to complex communities, contradicting earlier assumptions of uniform populations. Acquisition dynamics demonstrate both ancient co-evolutionary relationships and recent horizontal transfer events, with environmental factors driving strain-level variation in symbiont presence even within the same fungal species. Fungi can harbor either uniform or diverse bacterial communities, sometimes within specialized structures, and exhibit varying degrees of dependence on their symbionts. These interactions can be mutualistic, commensal, or parasitic, influencing fungal physiology, metabolism, and ecological function. Yet the underlying mechanisms have been thoroughly characterized in only a few model systems in which endofungal bacteria have been shown to affect nutrient acquisition, stress tolerance, secondary metabolite production, and even fungal pathogenicity. In return, fungi offer a protective niche and promote dispersion. These concepts collectively illustrate the evolutionary flexibility and ecological importance of fungi-bacteria partnerships across terrestrial ecosystems.</div><div>This review synthesizes emerging paradigms in endofungal bacteria research, integrating recent discoveries that challenge traditional assumptions about these symbioses. We examine host specificity patterns, acquisition mechanisms, and functional impacts while identifying critical knowledge gaps requiring investigation. A deeper understanding of these associations is essential to establish standardized frameworks for their applications in agriculture, medicine, and environmental sustainability.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"303 ","pages":"Article 128361"},"PeriodicalIF":6.9,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145289928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Su , Qimiao Shi , Liyao Bai , Xueru Xu , Xueyan Li , Shanshan Li , Can Chen , Mengdie Hu
{"title":"Biologically functional and regulatory analysis of a two-component signal transduction system CgtSR1 in Corynebacterium glutamicum","authors":"Tao Su , Qimiao Shi , Liyao Bai , Xueru Xu , Xueyan Li , Shanshan Li , Can Chen , Mengdie Hu","doi":"10.1016/j.micres.2025.128359","DOIUrl":"10.1016/j.micres.2025.128359","url":null,"abstract":"<div><div>The two-component systems (TCSs) are crucial for bacterial adaptation to environmental stresses and growth conditions. In <em>Corynebacterium glutamicum</em>, a model organism of <em>Corynebacteriales</em>, 13 TCSs have been identified, but only five of them have been characterized previously. The <em>ncgl0269</em>-<em>ncgl0268</em> gene cluster, annotated as a putative TCS (designated as CgtSR1), remains unexplored in terms of its regulatory role and mechanism. In this study, we revealed that CgtSR1 might regulate the expression of antimicrobial efflux transporters (including secondary transporters and primary transporters-ATP-binding cassette (ABC)) by transcriptomic analysis. EMSA experiments confirmed that CgtR1 directly binds to the promoter regions of three secondary transporter genes (<em>ncgl0887</em>, <em>ncgl1020</em>, and <em>ncgl1445</em>). Phenotypic assays demonstrated that the deletion of <em>cgtSR1</em> increased susceptibility to gentamicin and spectinomycin, whereas its overexpression conferred resistance. Additionally, overexpression of <em>cgtSR1</em> enhanced tolerance of cells to resorcinol and 2,4-dihydroxybenzoate. This study elucidates the regulatory network of CgtSR1 and deepens the understanding of TCS-mediated stress adaptation in <em>C. glutamicum</em>, providing a basis for further mechanistic investigations.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"302 ","pages":"Article 128359"},"PeriodicalIF":6.9,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145266973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haoyuan Ding , Zehua Zheng , Peherden Ahat , Wei Song , Yibei Zhang , Qiyao Wang
{"title":"The two-component system PvgAS orchestrates virulence gene expression in response to osmolality in Pseudomonas plecoglossicida","authors":"Haoyuan Ding , Zehua Zheng , Peherden Ahat , Wei Song , Yibei Zhang , Qiyao Wang","doi":"10.1016/j.micres.2025.128358","DOIUrl":"10.1016/j.micres.2025.128358","url":null,"abstract":"<div><div><em>Pseudomonas plecoglossicida</em> is an important pathogen causing diseases in various fish including large yellow croaker leading to severe economic losses. Type VI secretion system (T6SS) has been established essential for its invasion and colonization in hosts, but the mechanism underlying regulation of virulence gene expression <em>in vivo</em> in physical conditions is still lacking. In this study, we identified that histidine kinase PvgS and response regulator PvgA consist a cognate two-component system (TCS) that has been established to regulate expression of key virulence genes including T6SS-1. Chromatin immuno-precipitation sequencing (ChIP-seq) technology, qRT-PCR and electrophoretic mobility shift assay (EMSA) revealed the specific PvgA binding Logos present in the ∼106 genes directly controlled by PvgA in <em>P. plecoglossicida</em>. Structural models of PvgS bound to Na<sup>+</sup> and K<sup>+</sup> ions and mutation analysis indicated that PvgS mediated an osmolality dependent virulence gene expression, i.e. T6SS-1 and <em>pvgAS</em>. PvgAS switch T6SS-1 expression by responding to different osmolality of Na<sup>+</sup>, K<sup>+</sup>, or Li<sup>+</sup>, but not sucrose. Moreover, we showed distinct roles of osmolality and temperature in the hierarchical regulatory mechanism to control the virulence gene expression in <em>P. plecoglossicida</em>, i.e. while temperature synergistically affects the T6SS-1 secretion at low osmotic environment, osmotic pressure dominates the expression of T6SS-1 at both high and low temperatures. Taken together, our study provided a new paradigm for PvgAS mediated virulence gene expression in <em>P. plecoglossicida</em> by responding to ion mediated osmolality variations, and facilitated the understanding of its <em>in vivo</em> and <em>in vitro</em> lifestyle switching and bacterial pathogenesis.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"302 ","pages":"Article 128358"},"PeriodicalIF":6.9,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145266975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francisco Javier Marcos-Torres, Juana Pérez, David Torrens-González, Miguel Ángel García-Pedrosa, Francisco Javier Contreras-Moreno, Aurelio Moraleda-Muñoz
{"title":"Global copper response of the soil bacterial predator Myxococcus xanthus and its contribution to antibiotic cross-resistance","authors":"Francisco Javier Marcos-Torres, Juana Pérez, David Torrens-González, Miguel Ángel García-Pedrosa, Francisco Javier Contreras-Moreno, Aurelio Moraleda-Muñoz","doi":"10.1016/j.micres.2025.128357","DOIUrl":"10.1016/j.micres.2025.128357","url":null,"abstract":"<div><div>Copper accumulation in agricultural soils poses environmental challenges by selecting copper-resistant bacteria and also contributing to the co-selection of antibiotic-resistant bacteria. In addition, copper influences bacterial predator-prey interactions, potentially altering microbial ecosystems. <em>Myxococcus xanthus</em>, a soil-dwelling bacterium, preys on other microorganisms, including <em>Sinorhizobium meliloti</em>, a symbiotic nitrogen-fixing bacterium associated with leguminous plants. The role of copper in <em>M. xanthus</em> interactions remains poorly understood, although it accumulates at the predator-prey interface. In this study, we explore the transcriptomic response of <em>M. xanthus</em> to copper stress in both monocultures and co-cultures with <em>S. meliloti</em>. Our analysis identified many myxobacterial copper-regulated transcripts, and studies on mutant strains in some copper-induced genes revealed the role of two efflux pumps in cross-resistance to copper and tetracyclines. These findings provide new insights into the adaptive mechanisms of <em>M. xanthus</em> in response to copper, with implications for the co-selection of antibiotic resistance and the broader impact of copper on microbial community dynamics in soil ecosystems.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"302 ","pages":"Article 128357"},"PeriodicalIF":6.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145251443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}