Mini reviews in medicinal chemistry最新文献

筛选
英文 中文
Topoisomerase II Inhibition in Cancer: A Focus on Metal Complexes. 拓扑异构酶II在癌症中的抑制作用:金属配合物的焦点。
IF 3.3 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2025-06-05 DOI: 10.2174/0113895575370547250526062144
Amos Olalekan Akinyemi, Josias da Silveira Rocha, Gabriela Porto de Oliveira, Josenilton de Jesus Santos, Bolaji C Dayo Owoyemi, Fillipe Vieira Rocha
{"title":"Topoisomerase II Inhibition in Cancer: A Focus on Metal Complexes.","authors":"Amos Olalekan Akinyemi, Josias da Silveira Rocha, Gabriela Porto de Oliveira, Josenilton de Jesus Santos, Bolaji C Dayo Owoyemi, Fillipe Vieira Rocha","doi":"10.2174/0113895575370547250526062144","DOIUrl":"https://doi.org/10.2174/0113895575370547250526062144","url":null,"abstract":"<p><p>DNA topoisomerases, particularly type II, are crucial for DNA processes, such as replication, transcription, and chromosome segregation, making them prime targets for cancer therapy. This review delves into the multifaceted mechanisms of action of type II topoisomerases, highlighting their essential roles beyond cancer progression. It explores recent advancements in screening and designing metallic complexes as inhibitors of topoisomerase II activity. Emphasizing the structural and functional diversity between alpha and beta isoforms, it elucidates their significance in DNA metabolism and genome integrity. Additionally, this review discusses the interplay of topoisomerase II with cellular components, underscoring its regulatory roles in gene expression. Insights into screening and design strategies for metallic complex inhibitors are provided, showcasing their therapeutic potential against cancer. Overall, this review highlights the importance of understanding topoisomerase II inhibition mechanisms and the versatility of metallic complexes in biomedical research, paving the way for novel therapeutic strategies and broader applications beyond cancer therapy.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144258401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural Hydrazone Derivatives: Their Sources, Structures, and Bioactivities. 天然腙衍生物:来源、结构和生物活性。
IF 3.3 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2025-06-04 DOI: 10.2174/0113895575390008250520114953
Hagar Mohamed Mohamed, Hazem G A Hussein, Gamal A Mohamed, Shaimaa G A Mohamed, Sabrin R M Ibrahim
{"title":"Natural Hydrazone Derivatives: Their Sources, Structures, and Bioactivities.","authors":"Hagar Mohamed Mohamed, Hazem G A Hussein, Gamal A Mohamed, Shaimaa G A Mohamed, Sabrin R M Ibrahim","doi":"10.2174/0113895575390008250520114953","DOIUrl":"https://doi.org/10.2174/0113895575390008250520114953","url":null,"abstract":"<p><p>Hydrazone-containing compounds are a diverse group of bioactive compounds known for their unique chemical features and diverse biological activities. Natural hydrazone derivatives have been identified from various natural sources, including bacteria, plants, fungi, and marine organisms. This work provides a comprehensive review of published works on natural hydrazone derivatives, including their sources, structural features, and biological activity in the period from 1967 to March 2025. In this work, 72 compounds were reviewed, along with 75 references being cited. The reported findings in this work highlight the therapeutic potential of these compounds in pharmaceutical research and drug discovery.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144225907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovations in Cannabis Delivery Systems: A Patent Review (2012-2024). 大麻输送系统的创新:专利审查(2012-2024)。
IF 3.3 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2025-05-29 DOI: 10.2174/0113895575343984250519051357
Ana Sofía Guerrero Casas, Vanessa Castro Felix Lima, Nicolas Redondo, Izabel Almeida Alves, Diana Marcela Aragón
{"title":"Innovations in Cannabis Delivery Systems: A Patent Review (2012-2024).","authors":"Ana Sofía Guerrero Casas, Vanessa Castro Felix Lima, Nicolas Redondo, Izabel Almeida Alves, Diana Marcela Aragón","doi":"10.2174/0113895575343984250519051357","DOIUrl":"https://doi.org/10.2174/0113895575343984250519051357","url":null,"abstract":"<p><strong>Introduction: </strong>Cannabis sativa has been cultivated for over 11,700 years, originating in Central and Southeast Asia, and has been used for medical, recreational, and religious purposes. Among its therapeutic potentials, it is notable for its capacity to alleviate pain, nausea, anxiety, and more. The plant's primary secondary metabolites are cannabinoids, which interact with the endocannabinoid system to produce these effects. However, due to the dosage variability and the secondary effects associated with a lack of targeted action, their medical use is limited, creating the need for effective delivery systems.</p><p><strong>Methodology: </strong>This systematic patent review on cannabis drug delivery systems was conducted using patents retrieved from the Espacenet database. The search employed the keywords \"Cannabis\" and \"Delivery,\" along with the IPC classification code A61, to filter patents filed between 2012 and 2024. This initial search yielded 99 patents, which were further screened to identify 15 patents that met the inclusion criteria.</p><p><strong>Results: </strong>Of the selected patents, most originated from the United States, followed by Canada, international patents (WIPO), and China. A notable increase in patent filings occurred in 2022, coinciding with the peak in scientific publications on the topic. This trend indicates a growing interest in the design of cannabis delivery systems.</p><p><strong>Discussion: </strong>The historical importance and therapeutic potential of Cannabis sativa are welldocumented, yet modern medical use remains restricted due to pharmacokinetic limitations. Delivery systems such as extracellular vesicles, microneedles, and emulsions have been developed to improve the bioavailability and stability of cannabinoids. Extracellular vesicles facilitate targeted, noninvasive delivery of cannabinoids to the central nervous system. Microneedles offer a painless method for transdermal administration, overcoming skin barrier limitations. Emulsions improve the solubility and bioavailability of lipophilic cannabinoids, making them suitable for various administration routes.</p><p><strong>Conclusion: </strong>Since 2012, there has been considerable growth in patents and publications related to cannabis drug delivery systems, driven by the therapeutic potential of cannabinoids. Innovations in delivery systems like emulsions, microneedles, and extracellular vesicles aim to improve the pharmacokinetics and therapeutic efficacy of cannabis-derived compounds, representing a shift towards medical cannabis applications.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144199605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytochemical and Biological Biodiversity of Tomato (Solanum lycopersicum L.) (2010-2022). 番茄(Solanum lycopersicum L.)的植物化学和生物多样性(2010-2022)
IF 3.3 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2025-05-09 DOI: 10.2174/0113895575347047250506102300
Marwa A M Abdel-Razek, Miada F Abdelwahab, Usama Ramadan Abdelmohsen, Ashraf N E Hamed
{"title":"Phytochemical and Biological Biodiversity of Tomato (Solanum lycopersicum L.) (2010-2022).","authors":"Marwa A M Abdel-Razek, Miada F Abdelwahab, Usama Ramadan Abdelmohsen, Ashraf N E Hamed","doi":"10.2174/0113895575347047250506102300","DOIUrl":"https://doi.org/10.2174/0113895575347047250506102300","url":null,"abstract":"<p><p>Tomato (Solanum lycopersicum L.) is one of the most common vegetable plants in the world. It is also named Lycopersicon esculentum. It serves as a model plant for the Solanaceae family, especially for plants that produce fleshy fruits. Various studies have shown that S. lycopersicum fruits, seeds, leaves, roots, in addition to tomato waste, constitute sources of vital bioactive substances such as lycopene, flavonoids, vitamins, and minerals. Consequently, tomatoes have powerful antioxidant activities in addition to cardiovascular protection, anticancer, antimutagenic, antiinflammatory, antimicrobial, neuroprotective, antidiabetic, radioprotective, gut modulating activities, vision effect, and hepatoprotective. The current review illuminates the different isolated phytochemicals and medicinal value, as well as the pharmacological activities of S. lycopersicum.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143972100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Developments in Triazole Derivatives as α-Glucoside Inhibitors for the Treatment of Diabetes. 三唑类α-葡萄糖苷抑制剂治疗糖尿病的研究进展。
IF 3.3 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2025-05-06 DOI: 10.2174/0113895575371876250429175826
Priya Devi, Subhadip Maity, Shankar Gupta, Aastha Singh, Sant Kumar Verma, Vivek Asati
{"title":"Recent Developments in Triazole Derivatives as α-Glucoside Inhibitors for the Treatment of Diabetes.","authors":"Priya Devi, Subhadip Maity, Shankar Gupta, Aastha Singh, Sant Kumar Verma, Vivek Asati","doi":"10.2174/0113895575371876250429175826","DOIUrl":"https://doi.org/10.2174/0113895575371876250429175826","url":null,"abstract":"<p><p>Diabetes mellitus, a serious metabolic health condition and one of the most common diseases around the globe, primarily arises due to elevated blood sugar levels and causes multiple metabolic abnormalities. Nowadays, it has become the biggest challenge for the scientific community. Serious fatal health problems, such as neuropathy, retinopathy, and nephropathy, are the result of mismanagement of this illness, which significantly lowers the quality of life. α-glucosidase is an enzyme in the small intestine that causes the breakdown of complex polysaccharide units into glucose units, i.e., smaller units that then enter the bloodstream and result in hyperglycaemic conditions. To solve this issue, the inhibitors of α-glucosidase must be developed immediately to manage and treat diabetes in patients. This literature survey highlights the importance of triazoles containing different heterocyclic rings, such as furan, benzyl, benzimidazole, thiazole, pyrrole, coumarin, indole, xanthone, etc., which have shown promising antidiabetic activity against α-glucosidase. The parameters, such as kinetic investigations, binding interactions, IC50 value, structure-activity relationship, and molecular docking studies of the most potent compound, are covered in this review, which provides an overview of enzyme inhibitory activity. This review also includes the patents on α-glucosidase with triazole rings, demonstrating their effectiveness against α-glucosidase.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143971414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative Theranostics Strategies in the Fight Against Lung Cancer. 抗肺癌的创新治疗策略
IF 3.3 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2025-03-07 DOI: 10.2174/0113895575338753250228055700
Aashi Jain, Sakshi Soni, Vandana Soni, Sushil Kumar Kashaw
{"title":"Innovative Theranostics Strategies in the Fight Against Lung Cancer.","authors":"Aashi Jain, Sakshi Soni, Vandana Soni, Sushil Kumar Kashaw","doi":"10.2174/0113895575338753250228055700","DOIUrl":"https://doi.org/10.2174/0113895575338753250228055700","url":null,"abstract":"<p><p>This review delves into the potential of nanotechnology for improved lung cancer diagnosis and treatment. A critical focus is placed on various overexpressed biomarkers within lung tumors. These biomarkers serve as potential targets for nanoparticle-based drug delivery strategies. The review explores two main targeting approaches: passive and active (receptor-based) targeting. Active targeting mechanisms like EGFR, folic acid, and CD44 receptor targeting are specifically discussed. Additionally, the review examines stimuli-responsive systems for targeted drug delivery, including pH, temperature, ligand-attached, and multi-stimuli-responsive systems. Moreover, the role of nanotechnology in theranostics, which combines therapeutic and diagnostic capabilities, is explored and different types of nanocarriers, including lipid-based, polymer-based, metal-based, and magnetic nanoparticles, are examined for their potential applications. The review also highlights advancements in lung cancer diagnostic techniques beyond nanotechnology. This includes emerging tools like biomarkers, biosensors, and artificial intelligence, alongside improvements to established methods. Finally, the review provides a glimpse into ongoing clinical trials and concludes by emphasizing the transformative potential of nanotechnology in improving lung cancer patient outcomes.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive Sulfonamides Derived from Amino Acids: Their Synthesis and Pharmacological Activities. 从氨基酸中提取的生物活性磺胺:它们的合成和药理活性。
IF 3.3 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2025-01-13 DOI: 10.2174/0113895575353663241129064820
Melford Chuka Egbujor, Paolo Tucci, Luciano Saso
{"title":"Bioactive Sulfonamides Derived from Amino Acids: Their Synthesis and Pharmacological Activities.","authors":"Melford Chuka Egbujor, Paolo Tucci, Luciano Saso","doi":"10.2174/0113895575353663241129064820","DOIUrl":"https://doi.org/10.2174/0113895575353663241129064820","url":null,"abstract":"<p><p>Currently, the synthesis of bioactive sulfonamides using amino acid as a starting reagent has become an area of research interest in organic chemistry. Over the years, an amine-sulfonyl chloride reaction has been adopted as a common step in traditional sulfonamide synthetic methods. However, recent developments have shown amino acids to be better precursors than amines in the synthesis of sulfonamides. Although amines and amino acids have some structural similarities, using amino acids rather than amines in the synthesis of sulfonamides minimizes several drawbacks. Comparatively, amino acids are preferred to amines as starting reagents in sulfonamide synthesis due to their biological relevance, chirality, stereochemistry, diversity of side chains, orthogonality in functional group manipulation, the potential for peptide and protein synthesis, mild reaction conditions, alignment with green chemistry principles, diverse synthetic applications, easy availability, and economic viability. Amino acids, having the aforementioned properties, offer a versatile platform for the synthesis of sulfonamides with tailored structures. The reaction mechanism of the synthesis of amino acid-derived sulfonamides involves a nucleophilic attack by the amino group on the activated sulfonyl species to produce a sulfonamide functional group. Amino acid-based sulfonamides have numerous pharmacological activities, including antibacterial, antiviral, anticancer, antioxidant, anti-inflammatory, anti-plasmodial, antimalarial, anti-trypanosomal, and insect growth regulatory properties. This review discusses several synthetic processes, emphasizing established ways, cutting- edge techniques, and novel approaches that emphasize the significance of amino acids in the synthesis of sulfonamides. The structure-activity relationship of amino acid-derived sulfonamides and their pharmacological activities are also highlighted.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Recent Trends in Photo-Drug Efficiency of Advanced Biomaterials in Photodynamic Therapy of Cancer. 先进生物材料在癌症光动力疗法中的光药效最新趋势综述。
IF 3.3 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2025-01-01 DOI: 10.2174/0113895575320468240912093945
Nawab Ali, Liaqat Rasheed, Wajid Rehman, Muhammad Naseer, Momin Khan, Safia Hassan, Amina Zulfiqar
{"title":"A Review on Recent Trends in Photo-Drug Efficiency of Advanced Biomaterials in Photodynamic Therapy of Cancer.","authors":"Nawab Ali, Liaqat Rasheed, Wajid Rehman, Muhammad Naseer, Momin Khan, Safia Hassan, Amina Zulfiqar","doi":"10.2174/0113895575320468240912093945","DOIUrl":"10.2174/0113895575320468240912093945","url":null,"abstract":"<p><p>Photodynamic Therapy (PDT) has emerged as a highly efficient and non-invasive cancer treatment, which is crucial considering the significant global mortality rates associated with cancer. The effectiveness of PDT primarily relies on the quality of the photosensitizers employed. When exposed to appropriate light irradiation, these photosensitizers absorb energy and transition to an excited state, eventually transferring energy to nearby molecules and generating Reactive Oxygen Species (ROS), including singlet oxygen [<sup>1</sup>O<sub>2</sub>]. The ability to absorb light in visible and nearinfrared wavelengths makes porphyrins and derivatives useful photosensitizers for PDT. Chemically, Porphyrins, composed of tetra-pyrrole structures connected by four methylene groups, represent the typical photosensitizers. The limited water solubility and bio-stability of porphyrin photosensitizers and their non-specific tumor-targeting properties hinder PDT effectiveness and clinical applications. Therefore, a wide range of modification and functionalization techniques have been used to maximize PDT efficiency and develop multidimensional porphyrin-based functional materials. Recent progress in porphyrin-based functional materials has been investigated in this review paper, focusing on two main aspects including the development of porphyrinic amphiphiles that improve water solubility and biocompatibility, and the design of porphyrin-based polymers, including block copolymers with covalent bonds and supramolecular polymers with noncovalent bonds, which provide versatile platforms for PDT applications. The development of porphyrin-based functional materials will allow researchers to significantly expand PDT applications for cancer therapy by opening up new opportunities. With these innovations, porphyrins will overcome their limitations and push PDT to the forefront of cancer treatment options.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"259-276"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial Metabolites-induced Epigenetic Modifications for Inhibition of Colorectal Cancer: Current Status and Future Perspectives. 微生物代谢物诱导的表观遗传修饰对结直肠癌的抑制作用:现状与未来展望》。
IF 3.3 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2025-01-01 DOI: 10.2174/0113895575320344240625080555
Vaibhav Singh, Ekta Shirbhate, Rakesh Kore, Subham Vishwakarma, Shadiya Parveen, Ravichandran Veerasamy, Amit K Tiwari, Harish Rajak
{"title":"Microbial Metabolites-induced Epigenetic Modifications for Inhibition of Colorectal Cancer: Current Status and Future Perspectives.","authors":"Vaibhav Singh, Ekta Shirbhate, Rakesh Kore, Subham Vishwakarma, Shadiya Parveen, Ravichandran Veerasamy, Amit K Tiwari, Harish Rajak","doi":"10.2174/0113895575320344240625080555","DOIUrl":"10.2174/0113895575320344240625080555","url":null,"abstract":"<p><p>Globally, one of the most prevalent cancers is colorectal cancer (CRC). Chemotherapy and surgery are two common conventional CRC therapies that are frequently ineffective and have serious adverse effects. Thus, there is a need for complementary and different therapeutic approaches. The use of microbial metabolites to trigger epigenetic alterations as a way of preventing CRC is one newly emerging field of inquiry. Small chemicals called microbial metabolites, which are made by microbes and capable of altering host cell behaviour, are created. Recent research has demonstrated that these metabolites can lead to epigenetic modifications such as histone modifications, DNA methylation, and non-coding RNA regulation, which can control gene expression and affect cellular behaviour. This review highlights the current knowledge on the epigenetic modification for cancer treatment, immunomodulatory and anti-carcinogenic attributes of microbial metabolites, gut epigenetic targeting system, and the role of dietary fibre and gut microbiota in cancer treatment. It also focuses on short-chain fatty acids, especially butyrates (which are generated by microbes), and their cancer treatment perspective, challenges, and limitations, as well as state-of-the-art research on microbial metabolites-induced epigenetic changes for CRC inhibition. In conclusion, the present work highlights the potential of microbial metabolites-induced epigenetic modifications as a novel therapeutic strategy for CRC suppression and guides future research directions in this dynamic field.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"76-93"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Application of the Pyrazole Structure in the Structural Modification of Natural Products. 吡唑结构在天然产物结构改性中的应用。
IF 3.3 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2025-01-01 DOI: 10.2174/0113895575359419241211092252
Fu-Qun Sun, Ya-Lan Wang, Ke Sun, Fei-Xia Yue, Yun-Xia Sun, Jia-Hong Ju, Zhan-Hui Jin, Qing-Kun Shen, Hong-Yan Guo, Mei-Hui Liu, Zhe-Shan Quan
{"title":"The Application of the Pyrazole Structure in the Structural Modification of Natural Products.","authors":"Fu-Qun Sun, Ya-Lan Wang, Ke Sun, Fei-Xia Yue, Yun-Xia Sun, Jia-Hong Ju, Zhan-Hui Jin, Qing-Kun Shen, Hong-Yan Guo, Mei-Hui Liu, Zhe-Shan Quan","doi":"10.2174/0113895575359419241211092252","DOIUrl":"10.2174/0113895575359419241211092252","url":null,"abstract":"<p><p>Most natural products in nature have broad but not exceedingly good biological activities. The pyrazole structure has been introduced into natural products due to its suitability for various synthetic methods and its broad pharmacological activities. This article provides a detailed introduction to the anti-inflammatory, antibacterial, antifungal, antiviral, and anti-Alzheimer disease activities of pyrazole-modified natural product derivatives, particularly their anti-tumor activity. It is worth noting that compared to lead compounds, most natural product derivatives modified with pyrazole exhibit excellent pharmacological activity. Some of these derivatives exhibit outstanding anti- tumor activity, with IC<sub>50</sub> values reaching nanomolar levels. This review provides more research directions and choices for future studies on natural products.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"628-652"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信