{"title":"A Review on Chemical Structures and Biological Activities of Dopamine Derivatives from Medicinal Insects.","authors":"Wen-Jun Wei, Dong-Ge Wang, Meng-Shan Ji, Tao Guo","doi":"10.2174/0113895575273335231128080705","DOIUrl":"10.2174/0113895575273335231128080705","url":null,"abstract":"<p><p>Medicinal insects play an important role in the treatment of refractory diseases due to their unique and rich pharmacological activities. However, compared to plants, microorganisms, and marine organisms, medicinal insects have been largely ignored. Some small molecules isolated from insects are known to have defensive effects, but their majority roles remain unknown. In-depth research on the small molecules of medicinal insects has been conducted in recent years. Then alkaloids, dopamine derivatives, nucleoside derivatives, and other components are obtained. Among them, dopamine derivatives are a unique class of components from medicinal insects. Thus, we present a comprehensive overview of chemical structures and biological activities of dopamine derivatives from some medicinal insects, which will bring more attention to other researchers for further chemical and biological investigations on the unique dopamine derivatives as well as medicinal insects.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1308-1322"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139564423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comprehensive Review on Chemistry and Biology of Tafamidis in Transthyretin Amyloidosis.","authors":"Monali B Patil, Piyush Ghode, Prashant Joshi","doi":"10.2174/0113895575241556231003055323","DOIUrl":"10.2174/0113895575241556231003055323","url":null,"abstract":"<p><p>Transthyretin amyloid cardiomyopathy and Transthyretin amyloid peripheral neuropathy are progressive disease conditions caused by Transthyretin amyloidosis (ATTR) fibril infiltration in the tissue. Transthyretin (TTR) protein misfolding and amyloid fibril deposits are pathological biomarkers of ATTR-related disorders. There are various treatment strategies targeting different stages in pathophysiology. One such strategy is TTR tetramer stabilization. Recently, a new TTR tetramer stabilizer, tafamidis, has been introduced that reduces the protein misfolding and amyloidosis and, consequently, disease progression in ATTR cardiomyopathy and peripheral neuropathy. This review will provide a comprehensive overview of the literature on tafamidis discovery, development, synthetic methods, pharmacokinetics, analytical methods and clinical trials. Overall, 7 synthetic methods, 5 analytical methods and 23 clinical trials have been summarized from the literature.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"571-587"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41204887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jayshree Swain, Pooja Jadhao, S L Sravya, Brij Teli, Kasukurti Lavanya, Jaspreet Singh, Abhay Sahoo, Srijit Das
{"title":"Mitochondrial Dysfunction and Imeglimin: A New Ray of Hope for the Treatment of Type-2 Diabetes Mellitus.","authors":"Jayshree Swain, Pooja Jadhao, S L Sravya, Brij Teli, Kasukurti Lavanya, Jaspreet Singh, Abhay Sahoo, Srijit Das","doi":"10.2174/0113895575260225230921062013","DOIUrl":"10.2174/0113895575260225230921062013","url":null,"abstract":"<p><p>Diabetes is a rapidly growing health challenge and epidemic in many developing countries, including India. India, being the diabetes capital of the world, has the dubious dual distinction of being the leading nations for both undernutrition and overnutrition. Diabetes prevalence has increased in both rural and urban areas, affected the younger population and increased the risk of complications and economic burden. These alarming statistics ring an alarm bell to achieve glycemic targets in the affected population in order to decrease diabetes-related morbidity and mortality. In the recent years, diabetes pathophysiology has been extended from an ominous triad through octet and dirty dozen etc. There is a new scope to target multiple pathways at the molecular level to achieve a better glycemic target and further prevent micro- and macrovascular complications. Mitochondrial dysfunction has a pivotal role in both β-cell failure and insulin resistance. Hence, targeting this molecular pathway may help with both insulin secretion and peripheral tissue sensitization to insulin. Imeglimin is the latest addition to our anti-diabetic armamentarium. As imeglimin targets, this root cause of defective energy metabolism and insulin resistance makes it a new add-on therapy in different diabetic regimes to achieve the proper glycemic targets. Its good tolerability and efficacy profiles in recent studies shows a new ray of hope in the journey to curtail diabetes-related morbidity.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1575-1589"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49679405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomimetic Synthesis of Biologically Active Natural Products: An Updated Review.","authors":"Neda Shakour, Manijeh Mohadeszadeh, Mehrdad Iranshahi","doi":"10.2174/1389557523666230417083143","DOIUrl":"10.2174/1389557523666230417083143","url":null,"abstract":"<p><strong>Background: </strong>Natural products have optical activities with unusual structural characteristics or specific stereoselectivity, mostly including spiro-ring systems or quaternary carbon atoms. Expensive and time-consuming methods for natural product purification, especially natural products with bioactive properties, have encouraged chemists to synthesize those compounds in laboratories. Due to their significant role in drug discovery and chemical biology, natural products have become a major area of synthetic organic chemistry. Most medicinal ingredients available today are healing agents derived from natural resources, such as plants, herbs, and other natural products.</p><p><strong>Methods: </strong>Materials were compiled using the three databases of ScienceDirect, PubMed, and Google Scholar. For this study, only English-language publications have been evaluated based on their titles, abstracts, and full texts.</p><p><strong>Results: </strong>Developing bioactive compounds and drugs from natural products has remained challenging despite recent advances. A major challenge is not whether a target can be synthesized but how to do so efficiently and practically. Nature has the ability to create molecules in a delicate but effective manner. A convenient method is to imitate the biogenesis of natural products from microbes, plants, or animals for synthesizing natural products. Inspired by the mechanisms occurring in the nature, synthetic strategies facilitate laboratory synthesis of natural compounds with complicated structures.</p><p><strong>Conclusion: </strong>In this review, we have elaborated on the recent syntheses of natural products conducted since 2008 and provided an updated outline of this area of research (Covering 2008-2022) using bioinspired methods, including Diels-Alder dimerization, photocycloaddition, cyclization, and oxidative and radical reactions, which will provide an easy access to precursors for biomimetic reactions. This study presents a unified method for synthesizing bioactive skeletal products.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"3-25"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9736851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melendez Solano Elizabeth, Stevens Barrón Jazmín Cristina, Chapa González Christian
{"title":"Immunotherapy in Combination with Chemotherapy for Triple-negative Breast Cancer.","authors":"Melendez Solano Elizabeth, Stevens Barrón Jazmín Cristina, Chapa González Christian","doi":"10.2174/1389557523666230517152538","DOIUrl":"10.2174/1389557523666230517152538","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks estrogen and progesterone receptors and does not overexpress the human epidermal growth factor receptor 2 (HER2). Previous treatment options for TNBC were limited to chemotherapy alone, resulting in a poor patient prognosis. In 2018, an estimated 2.1 million new cases of breast cancer were diagnosed globally, with the incidence increasing by 0.5% annually from 2014 to 2018. The exact prevalence of TNBC is difficult to determine because it is based on the absence of certain receptors and overexpression of HER2. Treatment options for TNBC include surgery, chemotherapy, radiation therapy, and targeted therapy. The available evidence suggests that combination immunotherapy using PD-1/PD-L1 inhibitors may be a promising treatment option for metastatic TNBC. In this review, we evaluated the efficacy and safety of different immunotherapies regimens for the treatment of TNBC. In many clinical trials, the overall response rate and survival were better in patients treated with these drug combinations than those treated with chemotherapy alone. Although definitive treatments are not within reach, efforts to gain a deeper understanding of combination immunotherapy have the potential to overcome the urge for safe and effective treatments.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"431-439"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9851334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drug Delivery System Approaches for Rheumatoid Arthritis Treatment: A Review.","authors":"Anushka Garhwal, Priyadarshi Kendya, Sakshi Soni, Shivam Kori, Vandana Soni, Sushil Kumar Kashaw","doi":"10.2174/1389557523666230913105803","DOIUrl":"10.2174/1389557523666230913105803","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic autoimmune disease that has traditionally been treated using a variety of pharmacological compounds. However, the effectiveness of these treatments is often limited due to challenges associated with their administration. Oral and parenteral routes of drug delivery are often restricted due to issues such as low bioavailability, rapid metabolism, poor absorption, first-pass effect, and severe side effects. In recent years, nanocarrier-based delivery methods have emerged as a promising alternative for overcoming these challenges. Nanocarriers, including nanoparticles, dendrimers, micelles, nanoemulsions, and stimuli-sensitive carriers, possess unique properties that enable efficient drug delivery and targeted therapy. Using nanocarriers makes it possible to circumvent traditional administration routes' limitations. One of the key advantages of nanocarrier- based delivery is the ability to overcome resistance or intolerance to traditional antirheumatic therapies. Moreover, nanocarriers offer improved drug stability, controlled release kinetics, and enhanced solubility, optimizing the therapeutic effect. They can also protect the encapsulated drug, prolonging its circulation time and facilitating sustained release at the target site. This targeted delivery approach ensures a higher concentration of the therapeutic agent at the site of inflammation, leading to improved therapeutic outcomes. This article explores potential developments in nanotherapeutic regimens for RA while providing a comprehensive summary of current approaches based on novel drug delivery systems. In conclusion, nanocarrier-based drug delivery systems have emerged as a promising solution for improving the treatment of rheumatoid arthritis. Further advancements in nanotechnology hold promise for enhancing the efficacy and safety of RA therapies, offering new hope for patients suffering from this debilitating disease.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"704-720"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10247103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antimicrobial and Cytotoxic Naphthoquinones from Microbial Origin: An Updated Review.","authors":"Marziyeh Esmaeilzadeh Kashi, Mahdiyeh Ghorbani, Hasan Badibostan, Veronique Seidel, Seyed Hamzeh Hosseini, Javad Asili, Abolfazl Shakeri, Amirhossein Sahebkar","doi":"10.2174/1389557523666230911141331","DOIUrl":"10.2174/1389557523666230911141331","url":null,"abstract":"<p><p>Naphthoquinones (NQs) are small molecules bearing two carbonyl groups. They have been the subject of much research due to their significant biological activities such as antiproliferative, antimicrobial, anti-inflammatory, antioxidant, and antimalarial effects. NQs are produced mainly by bacteria, fungi and higher plants. Among them, microorganisms are a treasure of NQs with diverse skeletons and pharmacological properties. The purpose of the present study is to provide a comprehensive update on the structural diversity and biological activities of 91 microbial naphthoquinones isolated from 2015 to 2022, with a special focus on antimicrobial and cytotoxic activities. During this period, potent cytotoxic NQs such as naphthablin B (46) and hygrocin C (30) against HeLa (IC<sub>50</sub>=0.23 μg/ml) and MDA-MB-431 (IC<sub>50</sub>=0.5 μg/ml) cell lines was reported, respectively. In addition, rubromycin CA1 (39), exhibited strong antibacterial activity against <i>Staphylococcus aureus</i> (MIC of 0.2 μg/ml). As importance bioactive compounds, NQs may open new horizon for treatment of cancer and drug resistant bacteria. As such, it is hoped that this review article may stimulates further research into the isolation of further NQs from microbial, and other sources as well as the screening of such compounds for biological activity and beneficial uses.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"844-862"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10257709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Critical Function of microRNAs in Developing Resistance against 5- Fluorouracil in Cancer Cells.","authors":"Farhad Sheikhnia, Hossein Maghsoudi, Maryam Majidinia","doi":"10.2174/1389557523666230825144150","DOIUrl":"10.2174/1389557523666230825144150","url":null,"abstract":"<p><p>Although there have been significant advancements in cancer treatment, resistance and recurrence in patients make it one of the leading causes of death worldwide. 5-fluorouracil (5-FU), an antimetabolite agent, is widely used in treating a broad range of human malignancies. The cytotoxic effects of 5-FU are mediated by the inhibition of thymidylate synthase (TYMS/TS), resulting in the suppression of essential biosynthetic activity, as well as the misincorporation of its metabolites into RNA and DNA. Despite its huge benefits in cancer therapy, the application of 5-FU in the clinic is restricted due to the occurrence of drug resistance. MicroRNAs (miRNAs) are small, non-coding RNAs that act as negative regulators in many gene expression processes. Research has shown that changes in miRNA play a role in cancer progression and drug resistance. This review examines the role of miRNAs in 5-FU drug resistance in cancers.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"601-617"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10129891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elena Martino, Shruti Thakur, Arun Kumar, Ashok Kumar Yadav, Donatella Boschi, Deepak Kumar, Marco Lolli
{"title":"Insight in Quinazoline-based HDAC Inhibitors as Anti-cancer Agents.","authors":"Elena Martino, Shruti Thakur, Arun Kumar, Ashok Kumar Yadav, Donatella Boschi, Deepak Kumar, Marco Lolli","doi":"10.2174/0113895575303614240527093106","DOIUrl":"10.2174/0113895575303614240527093106","url":null,"abstract":"<p><p>Cancer remains a primary cause of death globally, and effective treatments are still limited. While chemotherapy has notably enhanced survival rates, it brings about numerous side effects. Consequently, the ongoing challenge persists in developing potent anti-cancer agents with minimal toxicity. The versatile nature of the quinazoline moiety has positioned it as a pivotal component in the development of various antitumor agents, showcasing its promising role in innovative cancer therapeutics. This concise review aims to reveal the potential of quinazolines in creating anticancer medications that target histone deacetylases (HDACs).</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1983-2007"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayodeji O Egunlusi, Sarel F Malan, Vitalii A Palchykov, Jacques Joubert
{"title":"Calcium Modulating Effect of Polycyclic Cages: A Suitable Therapeutic Approach Against Excitotoxic-induced Neurodegeneration.","authors":"Ayodeji O Egunlusi, Sarel F Malan, Vitalii A Palchykov, Jacques Joubert","doi":"10.2174/0113895575273868231128104121","DOIUrl":"10.2174/0113895575273868231128104121","url":null,"abstract":"<p><p>Neurodegenerative disorders pose a significant challenge to global healthcare systems due to their progressive nature and the resulting loss of neuronal cells and functions. Excitotoxicity, characterized by calcium overload, plays a critical role in the pathophysiology of these disorders. In this review article, we explore the involvement of calcium dysregulation in neurodegeneration and neurodegenerative disorders. A promising therapeutic strategy to counter calcium dysregulation involves the use of calcium modulators, particularly polycyclic cage compounds. These compounds, structurally related to amantadine and memantine, exhibit neuroprotective properties by attenuating calcium influx into neuronal cells. Notably, the pentacycloundecylamine NGP1-01, a cage-like structure, has shown efficacy in inhibiting both <i>N</i>-methyl-D-aspartate (NMDA) receptors and voltage- gated calcium channels (VGCCs), making it a potential candidate for neuroprotection against excitotoxic-induced neurodegenerative disorders. The structure-activity relationship of polycyclic cage compounds is discussed in detail, highlighting their calcium-inhibitory activities. Various closed, open, and rearranged cage compounds have demonstrated inhibitory effects on calcium influx through NMDA receptors and VGCCs. Additionally, these compounds have exhibited neuroprotective properties, including free radical scavenging, attenuation of neurotoxicities, and reduction of neuroinflammation. Although the calcium modulatory activities of polycyclic cage compounds have been extensively studied, apart from amantadine and memantine, none have undergone clinical trials. Further <i>in vitro</i> and <i>in vivo</i> studies and subsequent clinical trials are required to establish the efficacy and safety of these compounds. The development of polycyclic cages as potential multifunctional agents for treating complex neurodegenerative diseases holds great promise.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1277-1292"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139564424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}