Mini reviews in medicinal chemistry最新文献

筛选
英文 中文
Biomimetic Synthesis of Biologically Active Natural Products: An Updated Review. 生物活性天然产品的仿生合成:最新综述。
IF 3.8 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2024-01-01 DOI: 10.2174/1389557523666230417083143
Neda Shakour, Manijeh Mohadeszadeh, Mehrdad Iranshahi
{"title":"Biomimetic Synthesis of Biologically Active Natural Products: An Updated Review.","authors":"Neda Shakour, Manijeh Mohadeszadeh, Mehrdad Iranshahi","doi":"10.2174/1389557523666230417083143","DOIUrl":"10.2174/1389557523666230417083143","url":null,"abstract":"<p><strong>Background: </strong>Natural products have optical activities with unusual structural characteristics or specific stereoselectivity, mostly including spiro-ring systems or quaternary carbon atoms. Expensive and time-consuming methods for natural product purification, especially natural products with bioactive properties, have encouraged chemists to synthesize those compounds in laboratories. Due to their significant role in drug discovery and chemical biology, natural products have become a major area of synthetic organic chemistry. Most medicinal ingredients available today are healing agents derived from natural resources, such as plants, herbs, and other natural products.</p><p><strong>Methods: </strong>Materials were compiled using the three databases of ScienceDirect, PubMed, and Google Scholar. For this study, only English-language publications have been evaluated based on their titles, abstracts, and full texts.</p><p><strong>Results: </strong>Developing bioactive compounds and drugs from natural products has remained challenging despite recent advances. A major challenge is not whether a target can be synthesized but how to do so efficiently and practically. Nature has the ability to create molecules in a delicate but effective manner. A convenient method is to imitate the biogenesis of natural products from microbes, plants, or animals for synthesizing natural products. Inspired by the mechanisms occurring in the nature, synthetic strategies facilitate laboratory synthesis of natural compounds with complicated structures.</p><p><strong>Conclusion: </strong>In this review, we have elaborated on the recent syntheses of natural products conducted since 2008 and provided an updated outline of this area of research (Covering 2008-2022) using bioinspired methods, including Diels-Alder dimerization, photocycloaddition, cyclization, and oxidative and radical reactions, which will provide an easy access to precursors for biomimetic reactions. This study presents a unified method for synthesizing bioactive skeletal products.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"3-25"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9736851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunotherapy in Combination with Chemotherapy for Triple-negative Breast Cancer. 免疫疗法与化疗相结合治疗三阴性乳腺癌。
IF 3.8 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2024-01-01 DOI: 10.2174/1389557523666230517152538
Melendez Solano Elizabeth, Stevens Barrón Jazmín Cristina, Chapa González Christian
{"title":"Immunotherapy in Combination with Chemotherapy for Triple-negative Breast Cancer.","authors":"Melendez Solano Elizabeth, Stevens Barrón Jazmín Cristina, Chapa González Christian","doi":"10.2174/1389557523666230517152538","DOIUrl":"10.2174/1389557523666230517152538","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks estrogen and progesterone receptors and does not overexpress the human epidermal growth factor receptor 2 (HER2). Previous treatment options for TNBC were limited to chemotherapy alone, resulting in a poor patient prognosis. In 2018, an estimated 2.1 million new cases of breast cancer were diagnosed globally, with the incidence increasing by 0.5% annually from 2014 to 2018. The exact prevalence of TNBC is difficult to determine because it is based on the absence of certain receptors and overexpression of HER2. Treatment options for TNBC include surgery, chemotherapy, radiation therapy, and targeted therapy. The available evidence suggests that combination immunotherapy using PD-1/PD-L1 inhibitors may be a promising treatment option for metastatic TNBC. In this review, we evaluated the efficacy and safety of different immunotherapies regimens for the treatment of TNBC. In many clinical trials, the overall response rate and survival were better in patients treated with these drug combinations than those treated with chemotherapy alone. Although definitive treatments are not within reach, efforts to gain a deeper understanding of combination immunotherapy have the potential to overcome the urge for safe and effective treatments.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"431-439"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9851334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug Delivery System Approaches for Rheumatoid Arthritis Treatment: A Review. 治疗类风湿性关节炎的给药系统方法:综述。
IF 3.8 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2024-01-01 DOI: 10.2174/1389557523666230913105803
Anushka Garhwal, Priyadarshi Kendya, Sakshi Soni, Shivam Kori, Vandana Soni, Sushil Kumar Kashaw
{"title":"Drug Delivery System Approaches for Rheumatoid Arthritis Treatment: A Review.","authors":"Anushka Garhwal, Priyadarshi Kendya, Sakshi Soni, Shivam Kori, Vandana Soni, Sushil Kumar Kashaw","doi":"10.2174/1389557523666230913105803","DOIUrl":"10.2174/1389557523666230913105803","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic autoimmune disease that has traditionally been treated using a variety of pharmacological compounds. However, the effectiveness of these treatments is often limited due to challenges associated with their administration. Oral and parenteral routes of drug delivery are often restricted due to issues such as low bioavailability, rapid metabolism, poor absorption, first-pass effect, and severe side effects. In recent years, nanocarrier-based delivery methods have emerged as a promising alternative for overcoming these challenges. Nanocarriers, including nanoparticles, dendrimers, micelles, nanoemulsions, and stimuli-sensitive carriers, possess unique properties that enable efficient drug delivery and targeted therapy. Using nanocarriers makes it possible to circumvent traditional administration routes' limitations. One of the key advantages of nanocarrier- based delivery is the ability to overcome resistance or intolerance to traditional antirheumatic therapies. Moreover, nanocarriers offer improved drug stability, controlled release kinetics, and enhanced solubility, optimizing the therapeutic effect. They can also protect the encapsulated drug, prolonging its circulation time and facilitating sustained release at the target site. This targeted delivery approach ensures a higher concentration of the therapeutic agent at the site of inflammation, leading to improved therapeutic outcomes. This article explores potential developments in nanotherapeutic regimens for RA while providing a comprehensive summary of current approaches based on novel drug delivery systems. In conclusion, nanocarrier-based drug delivery systems have emerged as a promising solution for improving the treatment of rheumatoid arthritis. Further advancements in nanotechnology hold promise for enhancing the efficacy and safety of RA therapies, offering new hope for patients suffering from this debilitating disease.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"704-720"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10247103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antimicrobial and Cytotoxic Naphthoquinones from Microbial Origin: An Updated Review. 源自微生物的抗菌和细胞毒性萘醌:最新综述。
IF 3.8 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2024-01-01 DOI: 10.2174/1389557523666230911141331
Marziyeh Esmaeilzadeh Kashi, Mahdiyeh Ghorbani, Hasan Badibostan, Veronique Seidel, Seyed Hamzeh Hosseini, Javad Asili, Abolfazl Shakeri, Amirhossein Sahebkar
{"title":"Antimicrobial and Cytotoxic Naphthoquinones from Microbial Origin: An Updated Review.","authors":"Marziyeh Esmaeilzadeh Kashi, Mahdiyeh Ghorbani, Hasan Badibostan, Veronique Seidel, Seyed Hamzeh Hosseini, Javad Asili, Abolfazl Shakeri, Amirhossein Sahebkar","doi":"10.2174/1389557523666230911141331","DOIUrl":"10.2174/1389557523666230911141331","url":null,"abstract":"<p><p>Naphthoquinones (NQs) are small molecules bearing two carbonyl groups. They have been the subject of much research due to their significant biological activities such as antiproliferative, antimicrobial, anti-inflammatory, antioxidant, and antimalarial effects. NQs are produced mainly by bacteria, fungi and higher plants. Among them, microorganisms are a treasure of NQs with diverse skeletons and pharmacological properties. The purpose of the present study is to provide a comprehensive update on the structural diversity and biological activities of 91 microbial naphthoquinones isolated from 2015 to 2022, with a special focus on antimicrobial and cytotoxic activities. During this period, potent cytotoxic NQs such as naphthablin B (46) and hygrocin C (30) against HeLa (IC<sub>50</sub>=0.23 μg/ml) and MDA-MB-431 (IC<sub>50</sub>=0.5 μg/ml) cell lines was reported, respectively. In addition, rubromycin CA1 (39), exhibited strong antibacterial activity against <i>Staphylococcus aureus</i> (MIC of 0.2 μg/ml). As importance bioactive compounds, NQs may open new horizon for treatment of cancer and drug resistant bacteria. As such, it is hoped that this review article may stimulates further research into the isolation of further NQs from microbial, and other sources as well as the screening of such compounds for biological activity and beneficial uses.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"844-862"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10257709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Critical Function of microRNAs in Developing Resistance against 5- Fluorouracil in Cancer Cells. 微RNA在癌细胞对5-氟尿嘧啶产生抗药性过程中的关键功能
IF 3.8 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2024-01-01 DOI: 10.2174/1389557523666230825144150
Farhad Sheikhnia, Hossein Maghsoudi, Maryam Majidinia
{"title":"The Critical Function of microRNAs in Developing Resistance against 5- Fluorouracil in Cancer Cells.","authors":"Farhad Sheikhnia, Hossein Maghsoudi, Maryam Majidinia","doi":"10.2174/1389557523666230825144150","DOIUrl":"10.2174/1389557523666230825144150","url":null,"abstract":"<p><p>Although there have been significant advancements in cancer treatment, resistance and recurrence in patients make it one of the leading causes of death worldwide. 5-fluorouracil (5-FU), an antimetabolite agent, is widely used in treating a broad range of human malignancies. The cytotoxic effects of 5-FU are mediated by the inhibition of thymidylate synthase (TYMS/TS), resulting in the suppression of essential biosynthetic activity, as well as the misincorporation of its metabolites into RNA and DNA. Despite its huge benefits in cancer therapy, the application of 5-FU in the clinic is restricted due to the occurrence of drug resistance. MicroRNAs (miRNAs) are small, non-coding RNAs that act as negative regulators in many gene expression processes. Research has shown that changes in miRNA play a role in cancer progression and drug resistance. This review examines the role of miRNAs in 5-FU drug resistance in cancers.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"601-617"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10129891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight in Quinazoline-based HDAC Inhibitors as Anti-cancer Agents. 基于喹唑啉的 HDAC 抑制剂作为抗癌药物的深入研究。
IF 3.3 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2024-01-01 DOI: 10.2174/0113895575303614240527093106
Elena Martino, Shruti Thakur, Arun Kumar, Ashok Kumar Yadav, Donatella Boschi, Deepak Kumar, Marco Lolli
{"title":"Insight in Quinazoline-based HDAC Inhibitors as Anti-cancer Agents.","authors":"Elena Martino, Shruti Thakur, Arun Kumar, Ashok Kumar Yadav, Donatella Boschi, Deepak Kumar, Marco Lolli","doi":"10.2174/0113895575303614240527093106","DOIUrl":"10.2174/0113895575303614240527093106","url":null,"abstract":"<p><p>Cancer remains a primary cause of death globally, and effective treatments are still limited. While chemotherapy has notably enhanced survival rates, it brings about numerous side effects. Consequently, the ongoing challenge persists in developing potent anti-cancer agents with minimal toxicity. The versatile nature of the quinazoline moiety has positioned it as a pivotal component in the development of various antitumor agents, showcasing its promising role in innovative cancer therapeutics. This concise review aims to reveal the potential of quinazolines in creating anticancer medications that target histone deacetylases (HDACs).</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1983-2007"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium Modulating Effect of Polycyclic Cages: A Suitable Therapeutic Approach Against Excitotoxic-induced Neurodegeneration. 多环笼的钙调节效应:对抗兴奋毒性诱导的神经退行性病变的合适治疗方法
IF 3.3 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2024-01-01 DOI: 10.2174/0113895575273868231128104121
Ayodeji O Egunlusi, Sarel F Malan, Vitalii A Palchykov, Jacques Joubert
{"title":"Calcium Modulating Effect of Polycyclic Cages: A Suitable Therapeutic Approach Against Excitotoxic-induced Neurodegeneration.","authors":"Ayodeji O Egunlusi, Sarel F Malan, Vitalii A Palchykov, Jacques Joubert","doi":"10.2174/0113895575273868231128104121","DOIUrl":"10.2174/0113895575273868231128104121","url":null,"abstract":"<p><p>Neurodegenerative disorders pose a significant challenge to global healthcare systems due to their progressive nature and the resulting loss of neuronal cells and functions. Excitotoxicity, characterized by calcium overload, plays a critical role in the pathophysiology of these disorders. In this review article, we explore the involvement of calcium dysregulation in neurodegeneration and neurodegenerative disorders. A promising therapeutic strategy to counter calcium dysregulation involves the use of calcium modulators, particularly polycyclic cage compounds. These compounds, structurally related to amantadine and memantine, exhibit neuroprotective properties by attenuating calcium influx into neuronal cells. Notably, the pentacycloundecylamine NGP1-01, a cage-like structure, has shown efficacy in inhibiting both <i>N</i>-methyl-D-aspartate (NMDA) receptors and voltage- gated calcium channels (VGCCs), making it a potential candidate for neuroprotection against excitotoxic-induced neurodegenerative disorders. The structure-activity relationship of polycyclic cage compounds is discussed in detail, highlighting their calcium-inhibitory activities. Various closed, open, and rearranged cage compounds have demonstrated inhibitory effects on calcium influx through NMDA receptors and VGCCs. Additionally, these compounds have exhibited neuroprotective properties, including free radical scavenging, attenuation of neurotoxicities, and reduction of neuroinflammation. Although the calcium modulatory activities of polycyclic cage compounds have been extensively studied, apart from amantadine and memantine, none have undergone clinical trials. Further <i>in vitro</i> and <i>in vivo</i> studies and subsequent clinical trials are required to establish the efficacy and safety of these compounds. The development of polycyclic cages as potential multifunctional agents for treating complex neurodegenerative diseases holds great promise.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1277-1292"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139564424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant-based Natural Products as inhibitors for Efflux Pumps to Reverse Multidrug Resistance in Staphylococcus aureus: A Mini Review. 以植物为基础的天然产品作为外排泵抑制剂逆转金黄色葡萄球菌的多药耐药性:微型综述。
IF 3.8 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2024-01-01 DOI: 10.2174/1389557523666230406092128
Shalini Ramalingam, Moola Joghee Nanjan Chandrasekar, Ganesh G N Krishnan, Moola Joghee Nanjan
{"title":"Plant-based Natural Products as inhibitors for Efflux Pumps to Reverse Multidrug Resistance in <i>Staphylococcus aureus</i>: A Mini Review.","authors":"Shalini Ramalingam, Moola Joghee Nanjan Chandrasekar, Ganesh G N Krishnan, Moola Joghee Nanjan","doi":"10.2174/1389557523666230406092128","DOIUrl":"10.2174/1389557523666230406092128","url":null,"abstract":"<p><p>Wounds provide a favourable site for microbial infection. Wound infection makes the healing more complex and does not proceed in an orchestrated manner leading to the chronic wound. Clinically infected wounds require proper antimicrobial therapy. Broad-spectrum antibiotics are usually prescribed first before going to targeted therapy. The current conventional mode of therapy mainly depends on the use of antibiotics topically or systemically. Repeated and prolonged use of antibiotics, however, leads to multidrug resistance. <i>Staphylococcus aureus</i> is the most common multidrugresistant microorganism found in wounds. It effectively colonizes the wound and produces many toxins, thereby reducing the host immune response and causing recurrent infection, thus making the wound more complex. The overexpression of efflux pumps is one of the major reasons for the emergence of multidrug resistance. Inhibition of efflux pumps is, therefore, a potential strategy to reverse this resistance. The effective therapy to overcome this antibiotic resistance is to use combination therapy, namely the combination of an inhibitor, and a non-antibiotic compound with an antibiotic for their dual function. Many synthetic efflux pump inhibitors to treat wound infections are still under clinical trials. In this connection, several investigations have been carried out on plant-based natural products as multidrug resistance-modifying agents as they are believed to be safe, inexpensive and suitable for chronic wound infections.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"272-288"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9267235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Literature on the Synthesis of Thiazole Derivatives and their Biological Activities. 有关噻唑衍生物的合成及其生物活性的最新文献。
IF 3.8 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2024-01-01 DOI: 10.2174/1389557523666230726142459
Thoraya A Farghaly, Ghaidaa H Alfaifi, Sobhi M Gomha
{"title":"Recent Literature on the Synthesis of Thiazole Derivatives and their Biological Activities.","authors":"Thoraya A Farghaly, Ghaidaa H Alfaifi, Sobhi M Gomha","doi":"10.2174/1389557523666230726142459","DOIUrl":"10.2174/1389557523666230726142459","url":null,"abstract":"<p><p>The thiazole ring is naturally occurring and is primarily found in marine and microbial sources. It has been identified in various compounds such as peptides, vitamins (thiamine), alkaloids, epothilone, and chlorophyll. Thiazole-containing compounds are widely recognized for their antibacterial, antifungal, anti-inflammatory, antimalarial, antitubercular, antidiabetic, antioxidant, anticonvulsant, anticancer, and cardiovascular activities. The objective of this review is to present recent advancements in the discovery of biologically active thiazole derivatives, including their synthetic methods and biological effects. This review comprehensively discusses the synthesis methods of thiazole and its corresponding biological activities within a specific timeframe, from 2017 until the conclusion of 2022.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"196-251"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9876283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thrombin - A Molecular Dynamics Perspective. 凝血酶--分子动力学视角。
IF 3.3 3区 医学
Mini reviews in medicinal chemistry Pub Date : 2024-01-01 DOI: 10.2174/1389557523666230821102655
Dizhou Wu, Athul Prem, Jiajie Xiao, Freddie R Salsbury
{"title":"Thrombin - A Molecular Dynamics Perspective.","authors":"Dizhou Wu, Athul Prem, Jiajie Xiao, Freddie R Salsbury","doi":"10.2174/1389557523666230821102655","DOIUrl":"10.2174/1389557523666230821102655","url":null,"abstract":"<p><p>Thrombin is a crucial enzyme involved in blood coagulation, essential for maintaining circulatory system integrity and preventing excessive bleeding. However, thrombin is also implicated in pathological conditions such as thrombosis and cancer. Despite the application of various experimental techniques, including X-ray crystallography, NMR spectroscopy, and HDXMS, none of these methods can precisely detect thrombin's dynamics and conformational ensembles at high spatial and temporal resolution. Fortunately, molecular dynamics (MD) simulation, a computational technique that allows the investigation of molecular functions and dynamics in atomic detail, can be used to explore thrombin behavior. This review summarizes recent MD simulation studies on thrombin and its interactions with other biomolecules. Specifically, the 17 studies discussed here provide insights into thrombin's switch between 'slow' and 'fast' forms, active and inactive forms, the role of Na<sup>+</sup> binding, the effects of light chain mutation, and thrombin's interactions with other biomolecules. The findings of these studies have significant implications for developing new therapies for thrombosis and cancer. By understanding thrombin's complex behavior, researchers can design more effective drugs and treatments that target thrombin.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1112-1124"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10042085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信