{"title":"Recent Progress of Glutathione Peroxidase 4 Inhibitors in Cancer Therapy.","authors":"Shangde Liu, Jian Wang","doi":"10.2174/0113895575308546240607073310","DOIUrl":"10.2174/0113895575308546240607073310","url":null,"abstract":"<p><p>Ferroptosis is a novel type of programmed cell death that relies on the build-up of intracellular iron and leads to an increase in toxic lipid peroxides. Glutathione Peroxidase 4 (GPX4) is a crucial regulator of ferroptosis that uses glutathione as a cofactor to detoxify cellular lipid peroxidation. Targeting GPX4 in cancer could be a promising strategy to induce ferroptosis and kill drugresistant cancers effectively. Currently, research on GPX4 inhibitors is of increasing interest in the field of anti-tumor agents. Many reviews have summarized the regulation and ferroptosis induction of GPX4 in human cancer and disease. However, insufficient attention has been paid to GPX4 inhibitors. This article outlines the molecular structures and development prospects of GPX4 inhibitors as novel anticancer agents.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"42-57"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of <i>Mycobacterium tuberculosis</i> Enoyl Acyl Reductase (InhA) Inhibitors: A Mini-Review.","authors":"Navin Kumar Tailor, Geeta Deswal, Kumar Guarve, Ajmer Singh Grewal","doi":"10.2174/0113895575309785240902102421","DOIUrl":"10.2174/0113895575309785240902102421","url":null,"abstract":"<p><p>This review article delves into the critical role of Enoyl acyl carrier protein reductase (InhA; ENR), a vital enzyme in the NADH-dependent acyl carrier protein reductase family, emphasizing its significance in fatty acid synthesis and, more specifically, the biosynthesis of mycolic acid. The primary objective of this literature review is to elucidate diverse scaffolds and their developmental progression targeting InhA inhibition, thereby disrupting mycolic acid biosynthesis. Various scaffolds, including thiourea, piperazine, thiadiazole, triazole, quinazoline, benzamide, rhodanine, benzoxazole, and pyridine, have been systematically explored for their potential as InhA inhibitors. Noteworthy findings highlight thiadiazole and triazole derivatives, demonstrating promising IC50 values within the nanomolar concentration range. The review offers comprehensive insights into InhA's structure, structure-activity relationships, and a detailed overview of distinct scaffolds as effective inhibitors of InhA.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"219-233"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review of the Protective Effects of Alkaloids against Alpha-synuclein Toxicity in Parkinson's Disease.","authors":"Mahdi Khodadadi, Behjat Javadi","doi":"10.2174/0113895575306884240604065754","DOIUrl":"10.2174/0113895575306884240604065754","url":null,"abstract":"<p><strong>Background: </strong>Alpha-synuclein (α-syn) aggregation products may cause neural injury and several neurodegenerative disorders (NDs) known as α-synucleinopathies. Alkaloids are secondary metabolites present in a variety of plant species and may positively affect human health, particularly α-synucleinopathy-associated NDs.</p><p><strong>Aim: </strong>To summarize the latest scientific data on the inhibitory properties of alkaloids in α- synucleinopathies, especially in Parkinson's disease.</p><p><strong>Methods: </strong>Literature search was performed using web-based databases including Web of Science, PubMed, and Scopus up to January 2024, in the English language.</p><p><strong>Results: </strong>Harmala alkaloids, caffein, lycorine, piperin, acetylcorynoline, berberin, papaverine, squalamine, trodusquemine and nicotin have been found to be the most active natural alkaloids against synucleinopathy. The underlying mechanisms that contribute to this effect would be the inhibition of α-syn aggregation; elimination of formed aggregates; improvement in autophagy activation; promotion of the activity and expression of antioxidative enzymes; and prevention of oxidative injury and apoptosis in dopaminergic neurons.</p><p><strong>Conclusion: </strong>The findings of the present study highlight the inhibitory activities of alkaloids against synucleinopathy. However, no clinical data supports the reported activities in humans, which calls attention to the need for conducting clinical trials to elucidate the efficacy, safety, proper dosage, unwanted effects and pharmacokinetics aspects of alkaloids in humans.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"112-127"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141317627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the Therapeutic Potential of Green Tea (<i>Camellia sinensis</i> L.) in Anti-Aging: A Comprehensive Review of Mechanisms and Findings.","authors":"Bhagavathi Sundaram Sivamaruthi, Natarajan Sisubalan, Shucai Wang, Periyanaina Kesika, Chaiyavat Chaiyasut","doi":"10.2174/0113895575331878240924035332","DOIUrl":"10.2174/0113895575331878240924035332","url":null,"abstract":"<p><p>Green tea (GT) is rich in phyto-active compounds such as epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC), catechin, and tannic acid, which exhibit synergistic effects when combined. Preclinical studies demonstrate that GT and its compounds can reduce reactive oxygen species (ROS), enhance antioxidant capacity, and alleviate aging-related issues such as memory impairments, cognitive decline, and shortened lifespan. Clinical trials corroborate the efficacy of topical GT formulations in improving skin tone, texture, and elasticity and reducing wrinkles. The present manuscript summarizes the recent update on the anti-aging potential of GT and its possible mechanisms. The literature survey suggests that GT consumption is linked to improved cognition, reduced depression levels, and activation of pathways in model organisms like C. elegans. Additionally, tea polyphenols enhance fibroblast mitophagy, boost hippocampal synaptic plasticity in rodents, and mitigate age-related cognitive decline. Moreover, EGCG exhibits anti-aging properties by reducing TNF-induced MMP-1 expression, suppressing ERK signaling, and inhibiting MEK and Src phosphorylation in human dermal fibroblasts. In the context of skin permeation and deposition, optimized transfersomal formulation (TF) incorporating EGCG and hyaluronic acid (HA) demonstrates significantly increased skin permeation and deposition of EGCG compared to plain EGCG. Furthermore, EGCG protects cardiomyocytes via the PPARγ pathway and combats age-related muscle loss through miRNA-486-5p regulation, AKT activation, and FoxO1a-mediated expression of MuRF1 and Atrogin-1. In conclusion, the regular consumption of GT holds promise for promoting physical and mental health, delaying brain and skin aging, and improving overall health by enhancing total antioxidant capacity.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"403-424"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential of Nature-derived Biopolymers for Oral Applications- A Mini-Review.","authors":"Vijayalakshmi Kumar, Ashok K Sundramoorthy","doi":"10.2174/0113895575359305241218113847","DOIUrl":"10.2174/0113895575359305241218113847","url":null,"abstract":"<p><p>In recent years, there has been a growing emphasis on the \"back-to-nature\" movement, which has brought biopolymers derived from natural sources into the spotlight. These biopolymers are gaining attention for their versatile surface-active properties, anti-adhesive capabilities, excellent biocompatibility, non-toxicity, biodegradability, and antimicrobial effectiveness against a wide range of oral microorganisms, including both bacteria and fungi. Researchers have been actively modifying these eco-friendly, nature-based biopolymers to enhance their interaction with surrounding cells and tissues, improving their performance in vivo. This has led to innovative applications in areas such as surface coatings, controlled drug delivery, tissue repair, and dental implant devices. These advancements hold the potential to pave the way for the development of novel drug delivery systems with enhanced therapeutic properties, ultimately supporting the creation of innovative formulations for clinical use. This review aims to provide an up-to-date overview of recent developments, explore potential future directions, and highlight the promising applications of nature-derived biopolymers in oral healthcare.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"529-538"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Copper Dyshomeostasis and Diabetic Complications: Chelation Strategies for Management.","authors":"Jahnavi Subramaniam, Aarya Aditi, Kishore Arumugam, Sathya Sri, Subramaniam Rajesh Bharathidevi, Kunka Mohanram Ramkumar","doi":"10.2174/0113895575308206240911104945","DOIUrl":"10.2174/0113895575308206240911104945","url":null,"abstract":"<p><p>Cuproptosis, an emerging concept in the field of diabetes research, presents a novel and promising perspective for the effective management of diabetes mellitus and its associated complications. Diabetes, characterized by chronic hyperglycemia, poses a substantial global health burden, with an increasing prevalence worldwide. Despite significant progress in our understanding of this complex metabolic disorder, optimal therapeutic strategies still remain elusive. The advent of cuproptosis, a term coined to describe copper-induced cellular cell death and its pivotal role in diabetes pathogenesis, opens new avenues for innovative interventions. Copper, an indispensable trace element, plays a pivotal role in a myriad of vital biological processes, encompassing energy production, bolstering antioxidant defenses, and altered cellular signaling. However, in the context of diabetes, this copper homeostasis is perturbed, driven by a combination of genetic predisposition, dietary patterns, and environmental factors. Excessive copper levels act as catalysts for oxidative stress, sparking intricate intracellular signaling cascades that further exacerbate metabolic dysfunction. In this review, we aim to explore the interrelationship between copper and diabetes comprehensively, shedding light on the intricate mechanisms underpinning cuproptosis. By unraveling the roles of copper transporters, copper-dependent enzymes, and cuproptotic signaling pathways, we seek to elucidate potential therapeutic strategies that harness the power of copper modulation in diabetes management. This insight sets the stage for a targeted approach to challenge the complex hurdles posed by diabetes, potentially transforming our therapeutic strategies in the ongoing fight against this pervasive global health concern.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"277-292"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Implications of Biomaterials for Chronic Wounds.","authors":"Virginia-Silviana Barbu Becherescu, Madalina-Diana Gaboreanu, Ioana Cristina Marinas, Andra-Maria Paun, Ileana Paula Ionel, Speranta Avram","doi":"10.2174/0113895575314580241121080256","DOIUrl":"10.2174/0113895575314580241121080256","url":null,"abstract":"<p><p>The use of biomaterials in treating and managing chronic wounds represents a significant challenge in global healthcare due to the complex nature of these wounds, which are slow to heal and can lead to complications such as frequent infections and diminished quality of life for patients. Chronic wounds, which can arise from conditions like diabetes, poor circulation, and pressure sores, pose distinct challenges in wound care, necessitating the development of specialized dressings. The pathophysiology of chronic wounds is thoroughly examined in this article, with particular attention paid to the cellular and molecular defects at work and the therapeutic guidelines. It also identifies key issues in the field, such as biocompatibility, cost-effectiveness, immune reactions, and regulatory obstacles, while suggesting future research focuses on improving biocompatibility, integrating drug delivery systems, and exploring cellular treatments. Ethical implications, such as patient safety, informed consent, and equitable access to technology, are also discussed. Finally, this review highlights the transformative potential of biomaterials in chronic wound management, urging for continued research and clinical integration to fully harness their capabilities in improving patient care.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"463-479"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142951212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Development History, Structural Composition, and Functions of Influenza Viruses and the Progress of Influenza Virus Inhibitors in Clinics and Clinical Trials.","authors":"Jianping Yong, Shaoji Lu, Canzhong Lu, Ruiwen Huang","doi":"10.2174/0113895575316416240724043949","DOIUrl":"10.2174/0113895575316416240724043949","url":null,"abstract":"<p><p>Flu is an acute respiratory disease caused by influenza viruses. The influenza viruses are classified as <i>Alphainfluenzavirus</i> (influenza A virus, IAV), <i>Betainfluenzavirus</i> (influenza B virus, IBV), <i>Gammainfluenzavirus</i> (influenza C virus, ICV), and <i>Deltainfluenzavirus</i> (influenza D virus, IDV) according to the antigenicity of nucleoproteins (NPs) and matrix (M) proteins <i>in vivo</i>. It is estimated that the seasonal influenza epidemics will cause about 3-5 million cases of serious illness and 290,000-650,000 deaths in the world every year, while influenza A virus is the leading cause of infection and death. Neuraminidase (NA) is one of the most critical targets for the development of anti-influenza virus drugs, and the main drugs clinically applied for the treatment of flu are neuraminidase inhibitors. However, various mutant strains have developed resistance to these inhibitors (For example, the substrains of H274Y in H1N1, H5N1, and E119V in H3N2 have developed resistance to Oseltamivir). Influenza viruses mutate frequently, and new substrains emerge constantly, and the pandemics caused by the new substrains will break out at any time. Therefore, it is urgent to develop new and wide-spectrum influenza virus inhibitors for overcoming the emerging influenza pandemic. Here, we focus on describing the progress of influenza virus inhibitors in clinics and clinical trials to provide a comprehensive reference for the researchers.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"196-207"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting Bcl-2 with Indole Scaffolds: Emerging Drug Design Strategies for Cancer Treatment.","authors":"Pouria Zarrin, Zeynep Ates-Alagoz","doi":"10.2174/0113895575306176240925094457","DOIUrl":"10.2174/0113895575306176240925094457","url":null,"abstract":"<p><p>The B-cell lymphoma-2 (Bcl-2) protein family plays a crucial role as a regulator in the process of apoptosis. There is a substantial body of evidence indicating that the upregulation of antiapoptotic Bcl-2 proteins is prevalent in several cancer cell lines and original tumour tissue samples. This phenomenon plays a crucial role in enabling tumour cells to avoid apoptosis, hence facilitating the development of resistant cells against chemotherapy. Therefore, the success rate of chemotherapy for cancer can be enhanced by the down-regulation of anti-apoptotic Bcl-2 proteins. Furthermore, the indole structural design is commonly found in a variety of natural substances and biologically active compounds, particularly those that possess anti-cancer properties. Due to its distinctive physicochemical and biological characteristics, it has been highly regarded as a fundamental framework in the development and production of anti-cancer drugs. As a result, a considerable range of indole derivatives, encompassing both naturally occurring and developed compounds, have been identified as potential candidates for the treatment of cancer. Several of these derivatives have advanced to clinical trials, while others are already being used in clinical settings. This emphasizes the significant role of indole in the field of research and development of anti-cancer therapeutics. This study provides an overview of apoptosis and the structural characteristics of Bcl-2 family proteins, and mainly examines the present stage and recent developments in Bcl-2 inhibitors with an indole scaffold embedded in their structure.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"293-318"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Repurposing of CDK Inhibitors as Host Targeting Antivirals: A Mini- Review.","authors":"Miao Liu, Wei Peng, Xingyue Ji","doi":"10.2174/0113895575311618240820103549","DOIUrl":"10.2174/0113895575311618240820103549","url":null,"abstract":"<p><p>Most of the antiviral drugs in the market are designed to target viral proteins directly. They are generally considered safe for human use. However, they also suffer from several inherent limitations, in particular, narrow-spectrum antiviral profiles and liability to drug resistance. The other strategy for antiviral drug development is targeting host factors, which are highly involved at different stages in the viral life cycle. In contrast to direct-acting antiviral agents, host-targeting antiviral ones normally exhibit broad-spectrum antiviral properties along with a much higher genetic barrier to drug resistance. Cyclin-dependent kinases (CDKs) represent one such host factor. In this review, we summarized a number of CDK inhibitors (CDKIs) of varied chemical scaffolds with demonstrated antiviral activity. Challenges and issues associated with the repurposing of CDKIs as antiviral agents were also discussed.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"178-189"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}