{"title":"Promising Inhibitors of Endocannabinoid Degrading Enzymes Sharing a Carbamate Scaffold.","authors":"Shivani Jaiswal, Senthil Raja Ayyannan","doi":"10.2174/0113895575328120241107061303","DOIUrl":null,"url":null,"abstract":"<p><p>Carbamate has been extensively used as a scaffold in the recent era of drug discovery and is a common structural motif of many approved drugs. The carbamate moiety's unique amide-ester hybrid (-O-CO-NH-) feature offers the designing of specific drug-target interactions. Despite the discovery of numerous carbamate derivatives that act on the endocannabinoid system (ECS), the development of clinically effective carbamates remains a challenge. In this review, we highlight the therapeutic potential of carbamate inhibitors of endocannabinoid degrading enzymes as a breakthrough in discovering neurotherapeutic drugs. We discuss the design strategies and medicinal chemistry aspects involved in developing carbamate-based molecular architectures that modulate the endocannabinoid signaling pathway by interfering with fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and α/β-Hydrolase domain-containing 6 (ABHD6). Additionally, we highlight the dual activity profile of carbamates against FAAH and MAGL, FAAH and cholinesterase, and FAAH and TRPV1 channels. Furthermore, we illustrate the pharmacophores of O-functionalized carbamates and N-cyclic carbamates that are crucial for FAAH and MAGL inhibitory activities, respectively.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini reviews in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113895575328120241107061303","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carbamate has been extensively used as a scaffold in the recent era of drug discovery and is a common structural motif of many approved drugs. The carbamate moiety's unique amide-ester hybrid (-O-CO-NH-) feature offers the designing of specific drug-target interactions. Despite the discovery of numerous carbamate derivatives that act on the endocannabinoid system (ECS), the development of clinically effective carbamates remains a challenge. In this review, we highlight the therapeutic potential of carbamate inhibitors of endocannabinoid degrading enzymes as a breakthrough in discovering neurotherapeutic drugs. We discuss the design strategies and medicinal chemistry aspects involved in developing carbamate-based molecular architectures that modulate the endocannabinoid signaling pathway by interfering with fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and α/β-Hydrolase domain-containing 6 (ABHD6). Additionally, we highlight the dual activity profile of carbamates against FAAH and MAGL, FAAH and cholinesterase, and FAAH and TRPV1 channels. Furthermore, we illustrate the pharmacophores of O-functionalized carbamates and N-cyclic carbamates that are crucial for FAAH and MAGL inhibitory activities, respectively.
期刊介绍:
The aim of Mini-Reviews in Medicinal Chemistry is to publish short reviews on the important recent developments in medicinal chemistry and allied disciplines.
Mini-Reviews in Medicinal Chemistry covers all areas of medicinal chemistry including developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, drug targets, and natural product research and structure-activity relationship studies.
Mini-Reviews in Medicinal Chemistry is an essential journal for every medicinal and pharmaceutical chemist who wishes to be kept informed and up-to-date with the latest and most important developments.