Microbiology and Molecular Biology Reviews最新文献

筛选
英文 中文
Harnessing the Power of Model Organisms To Unravel Microbial Functions in the Coral Holobiont. 利用模式生物的力量解开珊瑚Holobiont中的微生物功能。
IF 12.9 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-12-21 Epub Date: 2022-10-26 DOI: 10.1128/mmbr.00053-22
Giulia Puntin, Michael Sweet, Sebastian Fraune, Mónica Medina, Koty Sharp, Virginia M Weis, Maren Ziegler
{"title":"Harnessing the Power of Model Organisms To Unravel Microbial Functions in the Coral Holobiont.","authors":"Giulia Puntin,&nbsp;Michael Sweet,&nbsp;Sebastian Fraune,&nbsp;Mónica Medina,&nbsp;Koty Sharp,&nbsp;Virginia M Weis,&nbsp;Maren Ziegler","doi":"10.1128/mmbr.00053-22","DOIUrl":"10.1128/mmbr.00053-22","url":null,"abstract":"<p><p>Stony corals build the framework of coral reefs, ecosystems of immense ecological and economic importance. The existence of these ecosystems is threatened by climate change and other anthropogenic stressors that manifest in microbial dysbiosis such as coral bleaching and disease, often leading to coral mortality. Despite a significant amount of research, the mechanisms ultimately underlying these destructive phenomena, and what could prevent or mitigate them, remain to be resolved. This is mostly due to practical challenges in experimentation on corals and the highly complex nature of the coral holobiont that also includes bacteria, archaea, protists, and viruses. While the overall importance of these partners is well recognized, their specific contributions to holobiont functioning and their interspecific dynamics remain largely unexplored. Here, we review the potential of adopting model organisms as more tractable systems to address these knowledge gaps. We draw on parallels from the broader biological and biomedical fields to guide the establishment, implementation, and integration of new and emerging model organisms with the aim of addressing the specific needs of coral research. We evaluate the cnidarian models Hydra, Aiptasia, Cassiopea, and <i>Astrangia poculata</i>; review the fast-evolving field of coral tissue and cell cultures; and propose a framework for the establishment of \"true\" tropical reef-building coral models. Based on this assessment, we also suggest future research to address key aspects limiting our ability to understand and hence improve the response of reef-building corals to future ocean conditions.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10640821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi. 染色质和转录调控在真菌有性子实体形成中的作用。
IF 12.9 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-12-21 Epub Date: 2022-11-21 DOI: 10.1128/mmbr.00104-22
Minou Nowrousian
{"title":"The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi.","authors":"Minou Nowrousian","doi":"10.1128/mmbr.00104-22","DOIUrl":"10.1128/mmbr.00104-22","url":null,"abstract":"<p><p>Fungal fruiting bodies are complex, three-dimensional structures that arise from a less complex vegetative mycelium. Their formation requires the coordinated action of many genes and their gene products, and fruiting body formation is accompanied by major changes in the transcriptome. In recent years, numerous transcription factor genes as well as chromatin modifier genes that play a role in fruiting body morphogenesis were identified, and through research on several model organisms, the underlying regulatory networks that integrate chromatin structure, gene expression, and cell differentiation are becoming clearer. This review gives a summary of the current state of research on the role of transcriptional control and chromatin structure in fruiting body development. In the first part, insights from transcriptomics analyses are described, with a focus on comparative transcriptomics. In the second part, examples of more detailed functional characterizations of the role of chromatin modifiers and/or transcription factors in several model organisms (Neurospora crassa, Aspergillus nidulans, Sordaria macrospora, Coprinopsis cinerea, and Schizophyllum commune) that have led to a better understanding of regulatory networks at the level of chromatin structure and transcription are discussed.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769939/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9549194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Enforcement of Postzygotic Species Boundaries in the Fungal Kingdom. 真菌界合子后物种边界的强制执行。
IF 12.9 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-12-21 DOI: 10.1128/mmbr.00098-22
Jui-Yu Chou, Po-Chen Hsu, Jun-Yi Leu
{"title":"Enforcement of Postzygotic Species Boundaries in the Fungal Kingdom.","authors":"Jui-Yu Chou,&nbsp;Po-Chen Hsu,&nbsp;Jun-Yi Leu","doi":"10.1128/mmbr.00098-22","DOIUrl":"https://doi.org/10.1128/mmbr.00098-22","url":null,"abstract":"<p><p>Understanding the molecular basis of speciation is a primary goal in evolutionary biology. The formation of the postzygotic reproductive isolation that causes hybrid dysfunction, thereby reducing gene flow between diverging populations, is crucial for speciation. Using various advanced approaches, including chromosome replacement, hybrid introgression and transcriptomics, population genomics, and experimental evolution, scientists have revealed multiple mechanisms involved in postzygotic barriers in the fungal kingdom. These results illuminate both unique and general features of fungal speciation. Our review summarizes experiments on fungi exploring how Dobzhansky-Muller incompatibility, killer meiotic drive, chromosome rearrangements, and antirecombination contribute to postzygotic reproductive isolation. We also discuss possible evolutionary forces underlying different reproductive isolation mechanisms and the potential roles of the evolutionary arms race under the Red Queen hypothesis and epigenetic divergence in speciation.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769731/pdf/mmbr.00098-22.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10574142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Stress Response in Bifidobacteria. 双歧杆菌的应激反应。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-12-21 Epub Date: 2022-11-14 DOI: 10.1128/mmbr.00170-21
Marie Schöpping, Ahmad A Zeidan, Carl Johan Franzén
{"title":"Stress Response in Bifidobacteria.","authors":"Marie Schöpping, Ahmad A Zeidan, Carl Johan Franzén","doi":"10.1128/mmbr.00170-21","DOIUrl":"10.1128/mmbr.00170-21","url":null,"abstract":"<p><p>Bifidobacteria naturally inhabit diverse environments, including the gastrointestinal tracts of humans and animals. Members of the genus are of considerable scientific interest due to their beneficial effects on health and, hence, their potential to be used as probiotics. By definition, probiotic cells need to be viable despite being exposed to several stressors in the course of their production, storage, and administration. Examples of common stressors encountered by probiotic bifidobacteria include oxygen, acid, and bile salts. As bifidobacteria are highly heterogenous in terms of their tolerance to these stressors, poor stability and/or robustness can hamper the industrial-scale production and commercialization of many strains. Therefore, interest in the stress physiology of bifidobacteria has intensified in recent decades, and many studies have been established to obtain insights into the molecular mechanisms underlying their stability and robustness. By complementing traditional methodologies, omics technologies have opened new avenues for enhancing the understanding of the defense mechanisms of bifidobacteria against stress. In this review, we summarize and evaluate the current knowledge on the multilayered responses of bifidobacteria to stressors, including the most recent insights and hypotheses. We address the prevailing stressors that may affect the cell viability during production and use as probiotics. Besides phenotypic effects, molecular mechanisms that have been found to underlie the stress response are described. We further discuss strategies that can be applied to improve the stability of probiotic bifidobacteria and highlight knowledge gaps that should be addressed in future studies.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769877/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10821106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pheromone Response and Mating Behavior in Fission Yeast. 裂变酵母的信息素反应和交配行为。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-12-21 Epub Date: 2022-12-05 DOI: 10.1128/mmbr.00130-22
Taisuke Seike, Hironori Niki
{"title":"Pheromone Response and Mating Behavior in Fission Yeast.","authors":"Taisuke Seike, Hironori Niki","doi":"10.1128/mmbr.00130-22","DOIUrl":"10.1128/mmbr.00130-22","url":null,"abstract":"<p><p>Most ascomycete fungi, including the fission yeast Schizosaccharomyces pombe, secrete two peptidyl mating pheromones: C-terminally modified and unmodified peptides. S. pombe has two mating types, plus and minus, which secrete two different pheromones, P-factor (unmodified) and M-factor (modified), respectively. These pheromones are specifically recognized by receptors on the cell surface of cells of opposite mating types, which trigger a pheromone response. Recognition between pheromones and their corresponding receptors is important for mate discrimination; therefore, genetic changes in pheromone or receptor genes affect mate recognition and cause reproductive isolation that limits gene flow between populations. Such genetic variation in recognition via the pheromone/receptor system may drive speciation. Our recent studies reported that two pheromone receptors in S. pombe might have different stringencies in pheromone recognition. In this review, we focus on the molecular mechanism of pheromone response and mating behavior, emphasizing pheromone diversification and its impact on reproductive isolation in S. pombe and closely related fission yeast species. We speculate that the \"asymmetric\" system might allow flexible adaptation to pheromone mutational changes while maintaining stringent recognition of mating partners. The loss of pheromone activity results in the extinction of an organism's lineage. Therefore, genetic changes in pheromones and their receptors may occur gradually and/or coincidently before speciation. Our findings suggest that the M-factor plays an important role in partner discrimination, whereas P-factor communication allows flexible adaptation to create variations in S. pombe. Our inferences provide new insights into the evolutionary mechanisms underlying pheromone diversification.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10458957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of the Microbiota of the Female Reproductive Tract in Gynecological and Reproductive Health. 女性生殖道微生物群在妇科和生殖健康中的作用。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-12-21 Epub Date: 2022-10-12 DOI: 10.1128/mmbr.00181-21
Bin Zhu, Zhi Tao, Laahirie Edupuganti, Myrna G Serrano, Gregory A Buck
{"title":"Roles of the Microbiota of the Female Reproductive Tract in Gynecological and Reproductive Health.","authors":"Bin Zhu, Zhi Tao, Laahirie Edupuganti, Myrna G Serrano, Gregory A Buck","doi":"10.1128/mmbr.00181-21","DOIUrl":"10.1128/mmbr.00181-21","url":null,"abstract":"<p><p>The microbiome of the female reproductive tract defies the convention that high biodiversity is a hallmark of an optimal ecosystem. Although not universally true, a homogeneous vaginal microbiome composed of species of <i>Lactobacillus</i> is generally associated with health, whereas vaginal microbiomes consisting of other taxa are generally associated with dysbiosis and a higher risk of disease. The past decade has seen a rapid advancement in our understanding of these unique biosystems. Of particular interest, substantial effort has been devoted to deciphering how members of the microbiome of the female reproductive tract impact pregnancy, with a focus on adverse outcomes, including but not limited to preterm birth. Herein, we review recent research efforts that are revealing the mechanisms by which these microorganisms of the female reproductive tract influence gynecologic and reproductive health of the female reproductive tract.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769908/pdf/mmbr.00181-21.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9752398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Vigor: Importance of Hybrid λ Phages in Early Insights in Molecular Biology. 杂交活力:杂交λ噬菌体在分子生物学早期见解中的重要性。
IF 12.9 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-12-21 Epub Date: 2022-10-19 DOI: 10.1128/mmbr.00124-21
Michael Feiss, Ryland Young, Jolene Ramsey, Sankar Adhya, Costa Georgopoulos, Roger W Hendrix, Graham F Hatfull, Eddie B Gilcrease, Sherwood R Casjens
{"title":"Hybrid Vigor: Importance of Hybrid λ Phages in Early Insights in Molecular Biology.","authors":"Michael Feiss, Ryland Young, Jolene Ramsey, Sankar Adhya, Costa Georgopoulos, Roger W Hendrix, Graham F Hatfull, Eddie B Gilcrease, Sherwood R Casjens","doi":"10.1128/mmbr.00124-21","DOIUrl":"10.1128/mmbr.00124-21","url":null,"abstract":"<p><p>Laboratory-generated hybrids between phage λ and related phages played a seminal role in establishment of the λ model system, which, in turn, served to develop many of the foundational concepts of molecular biology, including gene structure and control. Important λ hybrids with phages 21 and 434 were the earliest of such phages. To understand the biology of these hybrids in full detail, we determined the complete genome sequences of phages 21 and 434. Although both genomes are canonical members of the λ-like phage family, they both carry unsuspected bacterial virulence gene types not previously described in this group of phages. In addition, we determined the sequences of the hybrid phages λ <i>imm21,</i> λ <i>imm434</i>, and λ <i>h434 imm21.</i> These sequences show that the replacements of λ DNA by nonhomologous segments of 21 or 434 DNA occurred through homologous recombination in adjacent sequences that are nearly identical in the parental phages. These five genome sequences correct a number of errors in published sequence fragments of the 21 and 434 genomes, and they point out nine nucleotide differences from Sanger's original λ sequence that are likely present in most extant λ strains in laboratory use today. We discuss the historical importance of these hybrid phages in the development of fundamental tenets of molecular biology and in some of the earliest gene cloning vectors. The 434 and 21 genomes reinforce the conclusion that the genomes of essentially all natural λ-like phages are mosaics of sequence modules from a pool of exchangeable segments.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9799177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10858789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FabT, a Bacterial Transcriptional Repressor That Limits Futile Fatty Acid Biosynthesis. 细菌转录抑制因子限制无用脂肪酸的生物合成。
IF 12.9 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-09-21 DOI: 10.1128/mmbr.00029-22
Clara Lambert, Claire Poyart, Alexandra Gruss, Agnes Fouet
{"title":"FabT, a Bacterial Transcriptional Repressor That Limits Futile Fatty Acid Biosynthesis.","authors":"Clara Lambert,&nbsp;Claire Poyart,&nbsp;Alexandra Gruss,&nbsp;Agnes Fouet","doi":"10.1128/mmbr.00029-22","DOIUrl":"https://doi.org/10.1128/mmbr.00029-22","url":null,"abstract":"<p><p>Phospholipids are vital membrane constituents that determine cell functions and interactions with the environment. For bacterial pathogens, rapid adjustment of phospholipid composition to changing conditions during infection can be crucial for growth and survival. Fatty acid synthesis (FASII) regulators are central to this process. This review puts the spotlight on FabT, a MarR-family regulator of FASII characterized in streptococci, enterococci, and lactococci. Roles of FabT in virulence, as reported in mouse and nonhuman primate infection models, will be discussed. We present FabT structure, the FabT regulon, and changes in FabT regulation according to growth conditions. A unique feature of FabT concerns its modulation by an unconventional corepressor, acyl-acyl-carrier protein (ACP). Some bacteria express two ACP proteins, which are distinguished by their interactions with endogenous or exogenous fatty acid sources, one of which causes strong FabT repression. This system seems to allow preferred use of environmental fatty acids, thereby saving energy by limiting futile FASII activity. Control of <i>fabT</i> expression and FabT activity link various metabolic pathways to FASII. The various physiological consequences of FabT loss summarized here suggest that FabT has potential as a narrow range therapeutic target.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491164/pdf/mmbr.00029-22.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9702821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
A Virus Is a Community: Diversity within Negative-Sense RNA Virus Populations. 病毒是一个群落:负义RNA病毒种群的多样性。
IF 12.9 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-09-21 DOI: 10.1128/mmbr.00086-21
Lavinia J González Aparicio, Carolina B López, Sébastien A Felt
{"title":"A Virus Is a Community: Diversity within Negative-Sense RNA Virus Populations.","authors":"Lavinia J González Aparicio,&nbsp;Carolina B López,&nbsp;Sébastien A Felt","doi":"10.1128/mmbr.00086-21","DOIUrl":"https://doi.org/10.1128/mmbr.00086-21","url":null,"abstract":"<p><p>Negative-sense RNA virus populations are composed of diverse viral components that interact to form a community and shape the outcome of virus infections. At the genomic level, RNA virus populations consist not only of a homogeneous population of standard viral genomes but also of an extremely large number of genome variants, termed viral quasispecies, and nonstandard viral genomes, which include copy-back viral genomes, deletion viral genomes, mini viral RNAs, and hypermutated RNAs. At the particle level, RNA virus populations are composed of pleomorphic particles, particles missing or having additional genomes, and single particles or particle aggregates. As we continue discovering more about the components of negative-sense RNA virus populations and their crucial functions during virus infection, it will become more important to study RNA virus populations as a whole rather than their individual parts. In this review, we will discuss what is known about the components of negative-sense RNA virus communities, speculate how the components of the virus community interact, and summarize what vaccines and antiviral therapies are being currently developed to target or harness these components.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491172/pdf/mmbr.00086-21.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9705327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Lessons Learned and Yet-to-Be Learned on the Importance of RNA Structure in SARS-CoV-2 Replication. 关于RNA结构在SARS-CoV-2复制中的重要性的经验教训和有待吸取的教训。
IF 12.9 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-09-21 Epub Date: 2022-07-07 DOI: 10.1128/mmbr.00057-21
Maclean Bassett, Marco Salemi, Brittany Rife Magalis
{"title":"Lessons Learned and Yet-to-Be Learned on the Importance of RNA Structure in SARS-CoV-2 Replication.","authors":"Maclean Bassett,&nbsp;Marco Salemi,&nbsp;Brittany Rife Magalis","doi":"10.1128/mmbr.00057-21","DOIUrl":"https://doi.org/10.1128/mmbr.00057-21","url":null,"abstract":"<p><p>SARS-CoV-2, the etiological agent responsible for the COVID-19 pandemic, is a member of the virus family <i>Coronaviridae</i>, known for relatively extensive (~30-kb) RNA genomes that not only encode for numerous proteins but are also capable of forming elaborate structures. As highlighted in this review, these structures perform critical functions in various steps of the viral life cycle, ultimately impacting pathogenesis and transmissibility. We examine these elements in the context of coronavirus evolutionary history and future directions for curbing the spread of SARS-CoV-2 and other potential human coronaviruses. While we focus on structures supported by a variety of biochemical, biophysical, and/or computational methods, we also touch here on recent evidence for novel structures in both protein-coding and noncoding regions of the genome, including an assessment of the potential role for RNA structure in the controversial finding of SARS-CoV-2 integration in \"long COVID\" patients. This review aims to serve as a consolidation of previous works on coronavirus and more recent investigation of SARS-CoV-2, emphasizing the need for improved understanding of the role of RNA structure in the evolution and adaptation of these human viruses.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40542591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信