Microbiology and Molecular Biology Reviews最新文献

筛选
英文 中文
Pheromone Response and Mating Behavior in Fission Yeast. 裂变酵母的信息素反应和交配行为。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-12-21 Epub Date: 2022-12-05 DOI: 10.1128/mmbr.00130-22
Taisuke Seike, Hironori Niki
{"title":"Pheromone Response and Mating Behavior in Fission Yeast.","authors":"Taisuke Seike, Hironori Niki","doi":"10.1128/mmbr.00130-22","DOIUrl":"10.1128/mmbr.00130-22","url":null,"abstract":"<p><p>Most ascomycete fungi, including the fission yeast Schizosaccharomyces pombe, secrete two peptidyl mating pheromones: C-terminally modified and unmodified peptides. S. pombe has two mating types, plus and minus, which secrete two different pheromones, P-factor (unmodified) and M-factor (modified), respectively. These pheromones are specifically recognized by receptors on the cell surface of cells of opposite mating types, which trigger a pheromone response. Recognition between pheromones and their corresponding receptors is important for mate discrimination; therefore, genetic changes in pheromone or receptor genes affect mate recognition and cause reproductive isolation that limits gene flow between populations. Such genetic variation in recognition via the pheromone/receptor system may drive speciation. Our recent studies reported that two pheromone receptors in S. pombe might have different stringencies in pheromone recognition. In this review, we focus on the molecular mechanism of pheromone response and mating behavior, emphasizing pheromone diversification and its impact on reproductive isolation in S. pombe and closely related fission yeast species. We speculate that the \"asymmetric\" system might allow flexible adaptation to pheromone mutational changes while maintaining stringent recognition of mating partners. The loss of pheromone activity results in the extinction of an organism's lineage. Therefore, genetic changes in pheromones and their receptors may occur gradually and/or coincidently before speciation. Our findings suggest that the M-factor plays an important role in partner discrimination, whereas P-factor communication allows flexible adaptation to create variations in S. pombe. Our inferences provide new insights into the evolutionary mechanisms underlying pheromone diversification.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"86 4","pages":"e0013022"},"PeriodicalIF":8.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10458957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of the Microbiota of the Female Reproductive Tract in Gynecological and Reproductive Health. 女性生殖道微生物群在妇科和生殖健康中的作用。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-12-21 Epub Date: 2022-10-12 DOI: 10.1128/mmbr.00181-21
Bin Zhu, Zhi Tao, Laahirie Edupuganti, Myrna G Serrano, Gregory A Buck
{"title":"Roles of the Microbiota of the Female Reproductive Tract in Gynecological and Reproductive Health.","authors":"Bin Zhu, Zhi Tao, Laahirie Edupuganti, Myrna G Serrano, Gregory A Buck","doi":"10.1128/mmbr.00181-21","DOIUrl":"10.1128/mmbr.00181-21","url":null,"abstract":"<p><p>The microbiome of the female reproductive tract defies the convention that high biodiversity is a hallmark of an optimal ecosystem. Although not universally true, a homogeneous vaginal microbiome composed of species of <i>Lactobacillus</i> is generally associated with health, whereas vaginal microbiomes consisting of other taxa are generally associated with dysbiosis and a higher risk of disease. The past decade has seen a rapid advancement in our understanding of these unique biosystems. Of particular interest, substantial effort has been devoted to deciphering how members of the microbiome of the female reproductive tract impact pregnancy, with a focus on adverse outcomes, including but not limited to preterm birth. Herein, we review recent research efforts that are revealing the mechanisms by which these microorganisms of the female reproductive tract influence gynecologic and reproductive health of the female reproductive tract.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"86 4","pages":"e0018121"},"PeriodicalIF":8.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769908/pdf/mmbr.00181-21.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9752398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enforcement of Postzygotic Species Boundaries in the Fungal Kingdom. 真菌界合子后物种边界的强制执行。
IF 12.9 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-12-21 DOI: 10.1128/mmbr.00098-22
Jui-Yu Chou, Po-Chen Hsu, Jun-Yi Leu
{"title":"Enforcement of Postzygotic Species Boundaries in the Fungal Kingdom.","authors":"Jui-Yu Chou,&nbsp;Po-Chen Hsu,&nbsp;Jun-Yi Leu","doi":"10.1128/mmbr.00098-22","DOIUrl":"https://doi.org/10.1128/mmbr.00098-22","url":null,"abstract":"<p><p>Understanding the molecular basis of speciation is a primary goal in evolutionary biology. The formation of the postzygotic reproductive isolation that causes hybrid dysfunction, thereby reducing gene flow between diverging populations, is crucial for speciation. Using various advanced approaches, including chromosome replacement, hybrid introgression and transcriptomics, population genomics, and experimental evolution, scientists have revealed multiple mechanisms involved in postzygotic barriers in the fungal kingdom. These results illuminate both unique and general features of fungal speciation. Our review summarizes experiments on fungi exploring how Dobzhansky-Muller incompatibility, killer meiotic drive, chromosome rearrangements, and antirecombination contribute to postzygotic reproductive isolation. We also discuss possible evolutionary forces underlying different reproductive isolation mechanisms and the potential roles of the evolutionary arms race under the Red Queen hypothesis and epigenetic divergence in speciation.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"86 4","pages":"e0009822"},"PeriodicalIF":12.9,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769731/pdf/mmbr.00098-22.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10574142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Stress Response in Bifidobacteria. 双歧杆菌的应激反应。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-12-21 Epub Date: 2022-11-14 DOI: 10.1128/mmbr.00170-21
Marie Schöpping, Ahmad A Zeidan, Carl Johan Franzén
{"title":"Stress Response in Bifidobacteria.","authors":"Marie Schöpping, Ahmad A Zeidan, Carl Johan Franzén","doi":"10.1128/mmbr.00170-21","DOIUrl":"10.1128/mmbr.00170-21","url":null,"abstract":"<p><p>Bifidobacteria naturally inhabit diverse environments, including the gastrointestinal tracts of humans and animals. Members of the genus are of considerable scientific interest due to their beneficial effects on health and, hence, their potential to be used as probiotics. By definition, probiotic cells need to be viable despite being exposed to several stressors in the course of their production, storage, and administration. Examples of common stressors encountered by probiotic bifidobacteria include oxygen, acid, and bile salts. As bifidobacteria are highly heterogenous in terms of their tolerance to these stressors, poor stability and/or robustness can hamper the industrial-scale production and commercialization of many strains. Therefore, interest in the stress physiology of bifidobacteria has intensified in recent decades, and many studies have been established to obtain insights into the molecular mechanisms underlying their stability and robustness. By complementing traditional methodologies, omics technologies have opened new avenues for enhancing the understanding of the defense mechanisms of bifidobacteria against stress. In this review, we summarize and evaluate the current knowledge on the multilayered responses of bifidobacteria to stressors, including the most recent insights and hypotheses. We address the prevailing stressors that may affect the cell viability during production and use as probiotics. Besides phenotypic effects, molecular mechanisms that have been found to underlie the stress response are described. We further discuss strategies that can be applied to improve the stability of probiotic bifidobacteria and highlight knowledge gaps that should be addressed in future studies.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"86 4","pages":"e0017021"},"PeriodicalIF":8.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769877/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10821106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Vigor: Importance of Hybrid λ Phages in Early Insights in Molecular Biology. 杂交活力:杂交λ噬菌体在分子生物学早期见解中的重要性。
IF 8 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-12-21 Epub Date: 2022-10-19 DOI: 10.1128/mmbr.00124-21
Michael Feiss, Ryland Young, Jolene Ramsey, Sankar Adhya, Costa Georgopoulos, Roger W Hendrix, Graham F Hatfull, Eddie B Gilcrease, Sherwood R Casjens
{"title":"Hybrid Vigor: Importance of Hybrid λ Phages in Early Insights in Molecular Biology.","authors":"Michael Feiss, Ryland Young, Jolene Ramsey, Sankar Adhya, Costa Georgopoulos, Roger W Hendrix, Graham F Hatfull, Eddie B Gilcrease, Sherwood R Casjens","doi":"10.1128/mmbr.00124-21","DOIUrl":"10.1128/mmbr.00124-21","url":null,"abstract":"<p><p>Laboratory-generated hybrids between phage λ and related phages played a seminal role in establishment of the λ model system, which, in turn, served to develop many of the foundational concepts of molecular biology, including gene structure and control. Important λ hybrids with phages 21 and 434 were the earliest of such phages. To understand the biology of these hybrids in full detail, we determined the complete genome sequences of phages 21 and 434. Although both genomes are canonical members of the λ-like phage family, they both carry unsuspected bacterial virulence gene types not previously described in this group of phages. In addition, we determined the sequences of the hybrid phages λ <i>imm21,</i> λ <i>imm434</i>, and λ <i>h434 imm21.</i> These sequences show that the replacements of λ DNA by nonhomologous segments of 21 or 434 DNA occurred through homologous recombination in adjacent sequences that are nearly identical in the parental phages. These five genome sequences correct a number of errors in published sequence fragments of the 21 and 434 genomes, and they point out nine nucleotide differences from Sanger's original λ sequence that are likely present in most extant λ strains in laboratory use today. We discuss the historical importance of these hybrid phages in the development of fundamental tenets of molecular biology and in some of the earliest gene cloning vectors. The 434 and 21 genomes reinforce the conclusion that the genomes of essentially all natural λ-like phages are mosaics of sequence modules from a pool of exchangeable segments.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"86 4","pages":"e0012421"},"PeriodicalIF":8.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9799177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10858789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FabT, a Bacterial Transcriptional Repressor That Limits Futile Fatty Acid Biosynthesis. 细菌转录抑制因子限制无用脂肪酸的生物合成。
IF 12.9 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-09-21 DOI: 10.1128/mmbr.00029-22
Clara Lambert, Claire Poyart, Alexandra Gruss, Agnes Fouet
{"title":"FabT, a Bacterial Transcriptional Repressor That Limits Futile Fatty Acid Biosynthesis.","authors":"Clara Lambert,&nbsp;Claire Poyart,&nbsp;Alexandra Gruss,&nbsp;Agnes Fouet","doi":"10.1128/mmbr.00029-22","DOIUrl":"https://doi.org/10.1128/mmbr.00029-22","url":null,"abstract":"<p><p>Phospholipids are vital membrane constituents that determine cell functions and interactions with the environment. For bacterial pathogens, rapid adjustment of phospholipid composition to changing conditions during infection can be crucial for growth and survival. Fatty acid synthesis (FASII) regulators are central to this process. This review puts the spotlight on FabT, a MarR-family regulator of FASII characterized in streptococci, enterococci, and lactococci. Roles of FabT in virulence, as reported in mouse and nonhuman primate infection models, will be discussed. We present FabT structure, the FabT regulon, and changes in FabT regulation according to growth conditions. A unique feature of FabT concerns its modulation by an unconventional corepressor, acyl-acyl-carrier protein (ACP). Some bacteria express two ACP proteins, which are distinguished by their interactions with endogenous or exogenous fatty acid sources, one of which causes strong FabT repression. This system seems to allow preferred use of environmental fatty acids, thereby saving energy by limiting futile FASII activity. Control of <i>fabT</i> expression and FabT activity link various metabolic pathways to FASII. The various physiological consequences of FabT loss summarized here suggest that FabT has potential as a narrow range therapeutic target.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"86 3","pages":"e0002922"},"PeriodicalIF":12.9,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491164/pdf/mmbr.00029-22.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9702821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
A Virus Is a Community: Diversity within Negative-Sense RNA Virus Populations. 病毒是一个群落:负义RNA病毒种群的多样性。
IF 12.9 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-09-21 DOI: 10.1128/mmbr.00086-21
Lavinia J González Aparicio, Carolina B López, Sébastien A Felt
{"title":"A Virus Is a Community: Diversity within Negative-Sense RNA Virus Populations.","authors":"Lavinia J González Aparicio,&nbsp;Carolina B López,&nbsp;Sébastien A Felt","doi":"10.1128/mmbr.00086-21","DOIUrl":"https://doi.org/10.1128/mmbr.00086-21","url":null,"abstract":"<p><p>Negative-sense RNA virus populations are composed of diverse viral components that interact to form a community and shape the outcome of virus infections. At the genomic level, RNA virus populations consist not only of a homogeneous population of standard viral genomes but also of an extremely large number of genome variants, termed viral quasispecies, and nonstandard viral genomes, which include copy-back viral genomes, deletion viral genomes, mini viral RNAs, and hypermutated RNAs. At the particle level, RNA virus populations are composed of pleomorphic particles, particles missing or having additional genomes, and single particles or particle aggregates. As we continue discovering more about the components of negative-sense RNA virus populations and their crucial functions during virus infection, it will become more important to study RNA virus populations as a whole rather than their individual parts. In this review, we will discuss what is known about the components of negative-sense RNA virus communities, speculate how the components of the virus community interact, and summarize what vaccines and antiviral therapies are being currently developed to target or harness these components.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"86 3","pages":"e0008621"},"PeriodicalIF":12.9,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491172/pdf/mmbr.00086-21.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9705327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Reflections on Cyanobacterial Chromatic Acclimation: Exploring the Molecular Bases of Organismal Acclimation and Motivation for Rethinking the Promotion of Equity in STEM. 蓝藻色驯化的思考:探索有机驯化的分子基础和反思STEM中促进公平的动机。
IF 12.9 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-09-21 DOI: 10.1128/mmbr.00106-21
Beronda L Montgomery
{"title":"Reflections on Cyanobacterial Chromatic Acclimation: Exploring the Molecular Bases of Organismal Acclimation and Motivation for Rethinking the Promotion of Equity in STEM.","authors":"Beronda L Montgomery","doi":"10.1128/mmbr.00106-21","DOIUrl":"https://doi.org/10.1128/mmbr.00106-21","url":null,"abstract":"<p><p>Cyanobacteria are photosynthetic organisms that exhibit characteristic acclimation and developmental responses to dynamic changes in the external light environment. Photomorphogenesis is the tuning of cellular physiology, development, morphology, and metabolism in response to external light cues. The tuning of photosynthetic pigmentation, carbon fixation capacity, and cellular and filament morphologies to changes in the prevalent wavelengths and abundance of light have been investigated to understand the regulation and fitness implications of different aspects of cyanobacterial photomorphogenesis. Chromatic acclimation (CA) is the most common form of photomorphogenesis that has been explored in cyanobacteria. Multiple types of CA in cyanobacteria have been reported, and insights gained into the regulatory pathways and networks controlling some of these CA types. I examine the recent expansion of CA types that occur in nature and provide an overview of known regulatory factors involved in distinct aspects of cyanobacterial photomorphogenesis. Additionally, I explore lessons for cultivating success in scientific communities that can be drawn from a reflection on existing knowledge of and approaches to studying CA.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"86 3","pages":"e0010621"},"PeriodicalIF":12.9,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491170/pdf/mmbr.00106-21.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9756035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Landmark Discoveries and Recent Advances in Type IV Pilus Research. IV型皮菌研究的里程碑式发现和最新进展。
IF 12.9 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-09-21 DOI: 10.1128/mmbr.00076-22
Pradip Kumar Singh, Janay Little, Michael S Donnenberg
{"title":"Landmark Discoveries and Recent Advances in Type IV Pilus Research.","authors":"Pradip Kumar Singh,&nbsp;Janay Little,&nbsp;Michael S Donnenberg","doi":"10.1128/mmbr.00076-22","DOIUrl":"https://doi.org/10.1128/mmbr.00076-22","url":null,"abstract":"<p><p>Type IV pili (T4P) are retractable multifunctional nanofibers present on the surface of numerous bacterial and archaeal species. Their importance to microbiology is difficult to overstate. The scientific journey leading to our current understanding of T4P structure and function has included many innovative research milestones. Although multiple T4P reviews over the years have emphasized recent advances, we find that current reports often omit many of the landmark discoveries in this field. Here, we attempt to highlight chronologically the most important work on T4P, from the discovery of pili to the application of sophisticated contemporary methods, which has brought us to our current state of knowledge. As there remains much to learn about the complex machine that assembles and retracts T4P, we hope that this review will increase the interest of current researchers and inspire innovative progress.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"86 3","pages":"e0007622"},"PeriodicalIF":12.9,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491203/pdf/mmbr.00076-22.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9520532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Mating-Type Switching in Budding Yeasts, from Flip/Flop Inversion to Cassette Mechanisms. 出芽酵母的交配类型转换,从翻转反转到盒式机制。
IF 12.9 1区 生物学
Microbiology and Molecular Biology Reviews Pub Date : 2022-06-15 DOI: 10.1128/mmbr.00007-21
Kenneth H Wolfe, Geraldine Butler
{"title":"Mating-Type Switching in Budding Yeasts, from Flip/Flop Inversion to Cassette Mechanisms.","authors":"Kenneth H Wolfe,&nbsp;Geraldine Butler","doi":"10.1128/mmbr.00007-21","DOIUrl":"https://doi.org/10.1128/mmbr.00007-21","url":null,"abstract":"<p><p>Mating-type switching is a natural but unusual genetic control process that regulates cell identity in ascomycete yeasts. It involves physically replacing one small piece of genomic DNA by another, resulting in replacement of the master regulatory genes in the mating pathway and hence a switch of cell type and mating behavior. In this review, we concentrate on recent progress that has been made on understanding the origins and evolution of mating-type switching systems in budding yeasts (subphylum Saccharomycotina). Because of the unusual nature and the complexity of the mechanism in Saccharomyces cerevisiae, mating-type switching was assumed until recently to have originated only once or twice during yeast evolution. However, comparative genomics analysis now shows that switching mechanisms arose many times independently-at least 11 times in budding yeasts and once in fission yeasts-a dramatic example of convergent evolution. Most of these lineages switch mating types by a flip/flop mechanism that inverts a section of a chromosome and is simpler than the well-characterized 3-locus cassette mechanism (<i>MAT</i>/<i>HML</i>/<i>HMR</i>) used by S. cerevisiae. Mating-type switching (secondary homothallism) is one of the two possible mechanisms by which a yeast species can become self-fertile. The other mechanism (primary homothallism) has also emerged independently in multiple evolutionary lineages of budding yeasts, indicating that homothallism has been favored strongly by natural selection. Recent work shows that HO endonuclease, which makes the double-strand DNA break that initiates switching at the S. cerevisiae <i>MAT</i> locus, evolved from an unusual mobile genetic element that originally targeted a glycolytic gene, <i>FBA1</i>.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"86 2","pages":"e0000721"},"PeriodicalIF":12.9,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941940/pdf/mmbr.00007-21.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10758971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信