{"title":"Understanding the gut microbiota by considering human evolution: a story of fire, cereals, cooking, molecular ingenuity, and functional cooperation.","authors":"Gerald W Tannock","doi":"10.1128/mmbr.00127-22","DOIUrl":"10.1128/mmbr.00127-22","url":null,"abstract":"<p><p>SUMMARYThe microbial community inhabiting the human colon, referred to as the gut microbiota, is mostly composed of bacterial species that, through extensive metabolic networking, degrade and ferment components of food and human secretions. The taxonomic composition of the microbiota has been extensively investigated in metagenomic studies that have also revealed details of molecular processes by which common components of the human diet are metabolized by specific members of the microbiota. Most studies of the gut microbiota aim to detect deviations in microbiota composition in patients relative to controls in the hope of showing that some diseases and conditions are due to or exacerbated by alterations to the gut microbiota. The aim of this review is to consider the gut microbiota in relation to the evolution of <i>Homo sapiens</i> which was heavily influenced by the consumption of a nutrient-dense non-arboreal diet, limited gut storage capacity, and acquisition of skills relating to mastering fire, cooking, and cultivation of cereal crops. The review delves into the past to gain an appreciation of what is important in the present. A holistic view of \"healthy\" microbiota function is proposed based on the evolutionary pathway shared by humans and gut microbes.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0012722"},"PeriodicalIF":8.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138830442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From isotopically labeled DNA to fluorescently labeled dynamic pili: building a mechanistic model of DNA transport to the cytoplasmic membrane.","authors":"Jason D Zuke, Briana M Burton","doi":"10.1128/mmbr.00125-23","DOIUrl":"10.1128/mmbr.00125-23","url":null,"abstract":"<p><p>SUMMARYNatural competence, the physiological state wherein bacteria produce proteins that mediate extracellular DNA transport into the cytosol and the subsequent recombination of DNA into the genome, is conserved across the bacterial domain. DNA must successfully translocate across formidable permeability barriers during import, including the cell membrane(s) and the cell wall, that are normally impermeable to large DNA polymers. This review will examine the mechanisms underlying DNA transport from the extracellular space to the cytoplasmic membrane. First, the challenges inherent to DNA movement through the cell periphery will be discussed to provide context for DNA transport during natural competence. The following sections will trace the development of a comprehensive model for DNA translocation to the cytoplasmic membrane, highlighting the crucial studies performed over the last century that have contributed to building contemporary DNA import models. Finally, this review will conclude by reflecting on what is still unknown about the process and the possible solutions to overcome these limitations.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0012523"},"PeriodicalIF":8.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140094304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Lax, Francisco E Nicolás, Eusebio Navarro, Victoriano Garre
{"title":"Molecular mechanisms that govern infection and antifungal resistance in Mucorales.","authors":"Carlos Lax, Francisco E Nicolás, Eusebio Navarro, Victoriano Garre","doi":"10.1128/mmbr.00188-22","DOIUrl":"10.1128/mmbr.00188-22","url":null,"abstract":"<p><p>SUMMARYThe World Health Organization has established a fungal priority pathogens list that includes species critical or highly important to human health. Among them is the order Mucorales, a fungal group comprising at least 39 species responsible for the life-threatening infection known as mucormycosis. Despite the continuous rise in cases and the poor prognosis due to innate resistance to most antifungal drugs used in the clinic, Mucorales has received limited attention, partly because of the difficulties in performing genetic manipulations. The COVID-19 pandemic has further escalated cases, with some patients experiencing the COVID-19-associated mucormycosis, highlighting the urgent need to increase knowledge about these fungi. This review addresses significant challenges in treating the disease, including delayed and poor diagnosis, the lack of accurate global incidence estimation, and the limited treatment options. Furthermore, it focuses on the most recent discoveries regarding the mechanisms and genes involved in the development of the disease, antifungal resistance, and the host defense response. Substantial advancements have been made in identifying key fungal genes responsible for invasion and tissue damage, host receptors exploited by the fungus to invade tissues, and mechanisms of antifungal resistance. This knowledge is expected to pave the way for the development of new antifungals to combat mucormycosis. In addition, we anticipate significant progress in characterizing Mucorales biology, particularly the mechanisms involved in pathogenesis and antifungal resistance, with the possibilities offered by CRISPR-Cas9 technology for genetic manipulation of the previously intractable Mucorales species.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0018822"},"PeriodicalIF":8.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kenneth W Nickerson, Daniel J Gutzmann, Cory H T Boone, Ruvini U Pathirana, Audrey L Atkin
{"title":"Physiological adventures in <i>Candida albicans</i>: farnesol and ubiquinones.","authors":"Kenneth W Nickerson, Daniel J Gutzmann, Cory H T Boone, Ruvini U Pathirana, Audrey L Atkin","doi":"10.1128/mmbr.00081-22","DOIUrl":"10.1128/mmbr.00081-22","url":null,"abstract":"<p><p>SUMMARYFarnesol was first identified as a quorum-sensing molecule, which blocked the yeast to hyphal transition in <i>Candida albicans</i>, 22 years ago. However, its interactions with <i>Candida</i> biology are surprisingly complex. Exogenous (secreted or supplied) farnesol can also act as a virulence factor during pathogenesis and as a fungicidal agent triggering apoptosis in other competing fungi. Farnesol synthesis is turned off both during anaerobic growth and in opaque cells. Distinctly different cellular responses are observed as exogenous farnesol levels are increased from 0.1 to 100 µM. Reported changes include altered morphology, stress response, pathogenicity, antibiotic sensitivity/resistance, and even cell lysis. Throughout, there has been a dearth of mechanisms associated with these observations, in part due to the absence of accurate measurement of intracellular farnesol levels (<i>F</i><sub><i>i</i></sub>). This obstacle has recently been overcome, and the above phenomena can now be viewed in terms of changing <i>F</i><sub><i>i</i></sub> levels and the percentage of farnesol secreted. Critically, two aspects of isoprenoid metabolism present in higher organisms are absent in <i>C. albicans</i> and likely in other yeasts. These are pathways for farnesol salvage (converting farnesol to farnesyl pyrophosphate) and farnesylcysteine cleavage, a necessary step in the turnover of farnesylated proteins. Together, these developments suggest a unifying model, whereby high, threshold levels of <i>F</i><sub><i>i</i></sub> regulate which target proteins are farnesylated or the extent to which they are farnesylated. Thus, we suggest that the diversity of cellular responses to farnesol reflects the diversity of the proteins that are or are not farnesylated.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0008122"},"PeriodicalIF":8.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140022194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valérie de Crécy-Lagard, Geoffrey Hutinet, José D D Cediel-Becerra, Yifeng Yuan, Rémi Zallot, Marc G Chevrette, R M Madhushi N Ratnayake, Marshall Jaroch, Samia Quaiyum, Steven Bruner
{"title":"Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages.","authors":"Valérie de Crécy-Lagard, Geoffrey Hutinet, José D D Cediel-Becerra, Yifeng Yuan, Rémi Zallot, Marc G Chevrette, R M Madhushi N Ratnayake, Marshall Jaroch, Samia Quaiyum, Steven Bruner","doi":"10.1128/mmbr.00199-23","DOIUrl":"10.1128/mmbr.00199-23","url":null,"abstract":"<p><p>SUMMARYDeazaguanine modifications play multifaceted roles in the molecular biology of DNA and tRNA, shaping diverse yet essential biological processes, including the nuanced fine-tuning of translation efficiency and the intricate modulation of codon-anticodon interactions. Beyond their roles in translation, deazaguanine modifications contribute to cellular stress resistance, self-nonself discrimination mechanisms, and host evasion defenses, directly modulating the adaptability of living organisms. Deazaguanine moieties extend beyond nucleic acid modifications, manifesting in the structural diversity of biologically active natural products. Their roles in fundamental cellular processes and their presence in biologically active natural products underscore their versatility and pivotal contributions to the intricate web of molecular interactions within living organisms. Here, we discuss the current understanding of the biosynthesis and multifaceted functions of deazaguanines, shedding light on their diverse and dynamic roles in the molecular landscape of life.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0019923"},"PeriodicalIF":8.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biogenesis, germination, and pathogenesis of <i>Cryptococcus</i> spores.","authors":"Sébastien C Ortiz, Christina M Hull","doi":"10.1128/mmbr.00196-23","DOIUrl":"10.1128/mmbr.00196-23","url":null,"abstract":"<p><p>SUMMARYSpores are primary infectious propagules for the majority of human fungal pathogens; however, relatively little is known about their fundamental biology. One strategy to address this deficiency has been to develop the basidiospores of <i>Cryptococcus</i> into a model for pathogenic spore biology. Here, we provide an update on the state of the field with a comprehensive review of the data generated from the study of <i>Cryptococcus</i> basidiospores from their formation (sporulation) and differentiation (germination) to their roles in pathogenesis. Importantly, we provide support for the presence of basidiospores in nature, define the key characteristics that distinguish basidiospores from yeast cells, and clarify their likely roles as infectious particles. This review is intended to demonstrate the importance of basidiospores in the field of <i>Cryptococcus</i> research and provide a solid foundation from which researchers who wish to study sexual spores in any fungal system can launch their studies.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0019623"},"PeriodicalIF":8.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Teresa OlczakMichał ŚmigaSvetlana V. AntonyukJohn W. Smalley1Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland2Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, the University of Liverpool, Liverpool, United Kingdom3Institute of Life Course and Medical Sciences, School of Dentistry, the University of Liverpool, Liverpool, United Kingdom, Corrella S. Detweiler
{"title":"Hemophore-like proteins of the HmuY family in the oral and gut microbiome: unraveling the mystery of their evolution","authors":"Teresa OlczakMichał ŚmigaSvetlana V. AntonyukJohn W. Smalley1Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland2Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, the University of Liverpool, Liverpool, United Kingdom3Institute of Life Course and Medical Sciences, School of Dentistry, the University of Liverpool, Liverpool, United Kingdom, Corrella S. Detweiler","doi":"10.1128/mmbr.00131-23","DOIUrl":"https://doi.org/10.1128/mmbr.00131-23","url":null,"abstract":"Microbiology and Molecular Biology Reviews, Ahead of Print. <br/>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"257 1","pages":""},"PeriodicalIF":12.9,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139665711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mireille Bétermier, Lawrence A Klobutcher, Eduardo Orias
{"title":"Programmed chromosome fragmentation in ciliated protozoa: multiple means to chromosome ends.","authors":"Mireille Bétermier, Lawrence A Klobutcher, Eduardo Orias","doi":"10.1128/mmbr.00184-22","DOIUrl":"10.1128/mmbr.00184-22","url":null,"abstract":"<p><p>SUMMARYCiliated protozoa undergo large-scale developmental rearrangement of their somatic genomes when forming a new transcriptionally active macronucleus during conjugation. This process includes the fragmentation of chromosomes derived from the germline, coupled with the efficient healing of the broken ends by <i>de novo</i> telomere addition. Here, we review what is known of developmental chromosome fragmentation in ciliates that have been well-studied at the molecular level (<i>Tetrahymena</i>, <i>Paramecium</i>, <i>Euplotes</i>, <i>Stylonychia</i>, and <i>Oxytricha</i>). These organisms differ substantially in the fidelity and precision of their fragmentation systems, as well as in the presence or absence of well-defined sequence elements that direct excision, suggesting that chromosome fragmentation systems have evolved multiple times and/or have been significantly altered during ciliate evolution. We propose a two-stage model for the evolution of the current ciliate systems, with both stages involving repetitive or transposable elements in the genome. The ancestral form of chromosome fragmentation is proposed to have been derived from the ciliate small RNA/chromatin modification process that removes transposons and other repetitive elements from the macronuclear genome during development. The evolution of this ancestral system is suggested to have potentiated its replacement in some ciliate lineages by subsequent fragmentation systems derived from mobile genetic elements.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0018422"},"PeriodicalIF":8.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138445289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the origin of the nucleus: a hypothesis.","authors":"Buzz Baum, Anja Spang","doi":"10.1128/mmbr.00186-21","DOIUrl":"10.1128/mmbr.00186-21","url":null,"abstract":"<p><p>SUMMARYIn this hypothesis article, we explore the origin of the eukaryotic nucleus. In doing so, we first look afresh at the nature of this defining feature of the eukaryotic cell and its core functions-emphasizing the utility of seeing the eukaryotic nucleoplasm and cytoplasm as distinct regions of a common compartment. We then discuss recent progress in understanding the evolution of the eukaryotic cell from archaeal and bacterial ancestors, focusing on phylogenetic and experimental data which have revealed that many eukaryotic machines with nuclear activities have archaeal counterparts. In addition, we review the literature describing the cell biology of representatives of the TACK and Asgardarchaeaota - the closest known living archaeal relatives of eukaryotes. Finally, bringing these strands together, we propose a model for the archaeal origin of the nucleus that explains much of the current data, including predictions that can be used to put the model to the test.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0018621"},"PeriodicalIF":8.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138451931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}