RecBCD酶:复杂解旋酶-核酸酶突变体的机制见解。

IF 8 1区 生物学 Q1 MICROBIOLOGY
Microbiology and Molecular Biology Reviews Pub Date : 2023-12-20 Epub Date: 2023-12-04 DOI:10.1128/mmbr.00041-23
Susan K Amundsen, Gerald R Smith
{"title":"RecBCD酶:复杂解旋酶-核酸酶突变体的机制见解。","authors":"Susan K Amundsen, Gerald R Smith","doi":"10.1128/mmbr.00041-23","DOIUrl":null,"url":null,"abstract":"<p><p>SUMMARYRecBCD enzyme is a multi-functional protein that initiates the major pathway of homologous genetic recombination and DNA double-strand break repair in <i>Escherichia coli</i>. It is also required for high cell viability and aids proper DNA replication. This 330-kDa, three-subunit enzyme is one of the fastest, most processive helicases known and contains a potent nuclease controlled by Chi sites, hotspots of recombination, in DNA. RecBCD undergoes major changes in activity and conformation when, during DNA unwinding, it encounters Chi (5'-GCTGGTGG-3') and nicks DNA nearby. Here, we discuss the multitude of mutations in each subunit that affect one or another activity of RecBCD and its control by Chi. These mutants have given deep insights into how the multiple activities of this complex enzyme are coordinated and how it acts in living cells. Similar studies could help reveal how other complex enzymes are controlled by inter-subunit interactions and conformational changes.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0004123"},"PeriodicalIF":8.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732027/pdf/","citationCount":"0","resultStr":"{\"title\":\"RecBCD enzyme: mechanistic insights from mutants of a complex helicase-nuclease.\",\"authors\":\"Susan K Amundsen, Gerald R Smith\",\"doi\":\"10.1128/mmbr.00041-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SUMMARYRecBCD enzyme is a multi-functional protein that initiates the major pathway of homologous genetic recombination and DNA double-strand break repair in <i>Escherichia coli</i>. It is also required for high cell viability and aids proper DNA replication. This 330-kDa, three-subunit enzyme is one of the fastest, most processive helicases known and contains a potent nuclease controlled by Chi sites, hotspots of recombination, in DNA. RecBCD undergoes major changes in activity and conformation when, during DNA unwinding, it encounters Chi (5'-GCTGGTGG-3') and nicks DNA nearby. Here, we discuss the multitude of mutations in each subunit that affect one or another activity of RecBCD and its control by Chi. These mutants have given deep insights into how the multiple activities of this complex enzyme are coordinated and how it acts in living cells. Similar studies could help reveal how other complex enzymes are controlled by inter-subunit interactions and conformational changes.</p>\",\"PeriodicalId\":18520,\"journal\":{\"name\":\"Microbiology and Molecular Biology Reviews\",\"volume\":\" \",\"pages\":\"e0004123\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732027/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Molecular Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mmbr.00041-23\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00041-23","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

recbcd酶是一种启动大肠杆菌同源基因重组和DNA双链断裂修复主要途径的多功能蛋白。它也是高细胞活力和帮助适当的DNA复制所必需的。这种330 kda的三亚基解旋酶是已知最快、最具进程性的解旋酶之一,含有一种由DNA重组热点Chi位点控制的强效核酸酶。在DNA解绕过程中,RecBCD遇到Chi(5’-GCTGGTGG-3’)并切割附近的DNA时,其活性和构象发生重大变化。在这里,我们讨论了影响RecBCD的一种或另一种活性以及Chi对其控制的每个亚基中的大量突变。这些突变体对这种复杂酶的多种活性如何协调以及它如何在活细胞中起作用提供了深刻的见解。类似的研究可以帮助揭示其他复杂酶是如何被亚基间相互作用和构象变化控制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RecBCD enzyme: mechanistic insights from mutants of a complex helicase-nuclease.

SUMMARYRecBCD enzyme is a multi-functional protein that initiates the major pathway of homologous genetic recombination and DNA double-strand break repair in Escherichia coli. It is also required for high cell viability and aids proper DNA replication. This 330-kDa, three-subunit enzyme is one of the fastest, most processive helicases known and contains a potent nuclease controlled by Chi sites, hotspots of recombination, in DNA. RecBCD undergoes major changes in activity and conformation when, during DNA unwinding, it encounters Chi (5'-GCTGGTGG-3') and nicks DNA nearby. Here, we discuss the multitude of mutations in each subunit that affect one or another activity of RecBCD and its control by Chi. These mutants have given deep insights into how the multiple activities of this complex enzyme are coordinated and how it acts in living cells. Similar studies could help reveal how other complex enzymes are controlled by inter-subunit interactions and conformational changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.80
自引率
0.80%
发文量
27
期刊介绍: Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信