Metabolic engineering最新文献

筛选
英文 中文
Combinatorial iterative method for metabolic engineering of Yarrowia lipolytica: application for betanin biosynthesis. Yarrowia lipolytica 代谢工程的组合迭代法:在甜菜宁生物合成中的应用。
IF 8.4 1区 生物学
Metabolic engineering Pub Date : 2024-09-09 DOI: 10.1016/j.ymben.2024.09.003
Wei Jiang,Shengbao Wang,Paulo Avila,Tue Sparholt Jørgensen,Zhijie Yang,Irina Borodina
{"title":"Combinatorial iterative method for metabolic engineering of Yarrowia lipolytica: application for betanin biosynthesis.","authors":"Wei Jiang,Shengbao Wang,Paulo Avila,Tue Sparholt Jørgensen,Zhijie Yang,Irina Borodina","doi":"10.1016/j.ymben.2024.09.003","DOIUrl":"https://doi.org/10.1016/j.ymben.2024.09.003","url":null,"abstract":"Combinatorial library-based metabolic engineering approaches allow lower cost and faster strain development. We developed a genetic toolbox EXPRESSYALI for combinatorial engineering of the oleaginous yeast Yarrowia lipolytica. The toolbox enables consecutive rounds of engineering, where up to three combinatorially assembled gene expression cassettes can be integrated into each yeast clone per round. The cassettes are integrated into distinct intergenic sites or an open reading frame of a target gene if a simultaneous gene knockout is desired. We demonstrate the application of the toolbox by optimizing the Y. lipolytica to produce the red beet color betanin via six consecutive rounds of genome editing and screening. The library size varied between 24-360. Library screening was facilitated by automated color-based colony picking. In the first round, betanin pathway genes were integrated, resulting in betanin titer of around 20 mg/L. Through the following five consecutive rounds, additional biosynthetic genes were integrated, and the precursor supply was optimized, resulting in a titer of 70 mg/L. Three beta-glucosidases were deleted to prevent betanin deglycosylation, which led to a betanin titer of 130 mg/L in a small scale and a titer of 1.4 g/L in fed-batch bioreactors. The EXPRESSYALI toolbox can facilitate metabolic engineering efforts in Y. lipolytica (available via AddGene Cat. Nr. 212682-212704, Addgene kit ID # 1000000245).","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 6-phosphofructokinase reaction in Acetivibrio thermocellus is both ATP- and pyrophosphate-dependent 热肠乙酸弧菌中的 6-磷酸果糖激酶反应既依赖 ATP,也依赖焦磷酸。
IF 6.8 1区 生物学
Metabolic engineering Pub Date : 2024-09-06 DOI: 10.1016/j.ymben.2024.09.002
{"title":"The 6-phosphofructokinase reaction in Acetivibrio thermocellus is both ATP- and pyrophosphate-dependent","authors":"","doi":"10.1016/j.ymben.2024.09.002","DOIUrl":"10.1016/j.ymben.2024.09.002","url":null,"abstract":"<div><p><em>Acetivibrio thermocellus</em> (formerly <em>Clostridium thermocellum</em>) is a potential platform for lignocellulosic ethanol production. Its industrial application is hampered by low product titres, resulting from a low thermodynamic driving force of its central metabolism. It possesses both a functional ATP- and a functional PP<sub>i</sub>-dependent 6-phosphofructokinase (PP<sub>i</sub>-Pfk), of which only the latter is held responsible for the low driving force. Here we show that, following the replacement of PP<sub>i</sub>-Pfk by cytosolic pyrophosphatase and transaldolase, the native ATP-Pfk is able to carry the full glycolytic flux. Interestingly, the barely-detectable <em>in vitro</em> ATP-Pfk activities are only a fraction of what would be required, indicating its contribution to glycolysis has consistently been underestimated. A kinetic model demonstrated that the strong inhibition of ATP-Pfk by PP<sub>i</sub> can prevent futile cycling that would arise when both enzymes are active simultaneously. As such, there seems to be no need for a long-sought-after PP<sub>i</sub>-generating mechanism to drive glycolysis, as PP<sub>i</sub>-Pfk can simply use whatever PP<sub>i</sub> is available, and ATP-Pfk complements the rest of the PFK-flux. Laboratory evolution of the ΔPP<sub>i</sub>-Pfk strain, unable to valorize PP<sub>i</sub>, resulted in a mutation in the GreA transcription elongation factor. This mutation likely results in reduced RNA-turnover, hinting at transcription as a significant (and underestimated) source of anabolic PP<sub>i</sub>. Together with other mutations, this resulted in an <em>A</em>. <em>thermocellus</em> strain with the hitherto highest biomass-specific cellobiose uptake rate of 2.2 g/g<sub>x</sub>/h. These findings are both relevant for fundamental insight into dual ATP/PP<sub>i</sub> Pfk-nodes, which are not uncommon in other microorganisms, as well as for further engineering of <em>A</em>. <em>thermocellus</em> for consolidated bioprocessing.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096717624001113/pdfft?md5=3c30f0db5f89c40bfd4e53984ece9b90&pid=1-s2.0-S1096717624001113-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A precise and sustainable doxycycline-inducible cell line development platform for reliable mammalian cell engineering with gain-of-function mutations 一种精确、可持续的强力霉素诱导细胞系开发平台,用于可靠的哺乳动物功能增益突变细胞工程。
IF 6.8 1区 生物学
Metabolic engineering Pub Date : 2024-09-05 DOI: 10.1016/j.ymben.2024.09.004
{"title":"A precise and sustainable doxycycline-inducible cell line development platform for reliable mammalian cell engineering with gain-of-function mutations","authors":"","doi":"10.1016/j.ymben.2024.09.004","DOIUrl":"10.1016/j.ymben.2024.09.004","url":null,"abstract":"<div><p>For mammalian synthetic biology research, multiple orthogonal and tunable gene expression systems have been developed, among which the tetracycline (Tet)-inducible system is a key tool for gain-of-function mutations. Precise and long-lasting regulation of genetic circuits is necessary for the effective use of these systems in genetically engineered stable cell lines. However, current cell line development strategies, which depend on either random or site-specific integration along with antibiotic selection, are unpredictable and unsustainable, limiting their widespread use. To overcome these issues, we aimed to establish a <u>R</u>obust <u>O</u>verexpression via <u>S</u>ite-specific integration of <u>E</u>ffector (ROSE) system, a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated streamlined Tet-On3G-inducible master cell line (MCL) development platform. ROSE MCLs equipped with a landing pad facilitated the transcriptional regulation of various effector genes via recombinase-mediated cassette exchange. Long-term investigation revealed that the modular design of genetic payloads and integration sites significantly affected the induction capacity and stability, with ROSE MCLs exhibiting exceptional induction performance. To demonstrate the versatility of our platform, we explored its efficiency for the precise regulation of selection stringency, manufacturing of therapeutic antibodies with tunable expression levels and timing, and transcription factor engineering. Overall, this study demonstrated the effectiveness and reliability of the ROSE platform, highlighting its potential for various biological and biotechnological applications.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096717624001137/pdfft?md5=f92842f3df45fa5c66a2dcae4976ed5d&pid=1-s2.0-S1096717624001137-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine learning framework for extracting information from biological pathway images in the literature 从文献中提取生物通路图像信息的机器学习框架。
IF 6.8 1区 生物学
Metabolic engineering Pub Date : 2024-09-02 DOI: 10.1016/j.ymben.2024.09.001
{"title":"A machine learning framework for extracting information from biological pathway images in the literature","authors":"","doi":"10.1016/j.ymben.2024.09.001","DOIUrl":"10.1016/j.ymben.2024.09.001","url":null,"abstract":"<div><p>There have been significant advances in literature mining, allowing for the extraction of target information from the literature. However, biological literature often includes biological pathway images that are difficult to extract in an easily editable format. To address this challenge, this study aims to develop a machine learning framework called the “Extraction of Biological Pathway Information” (EBPI). The framework automates the search for relevant publications, extracts biological pathway information from images within the literature, including genes, enzymes, and metabolites, and generates the output in a tabular format. For this, this framework determines the direction of biochemical reactions, and detects and classifies texts within biological pathway images. Performance of EBPI was evaluated by comparing the extracted pathway information with manually curated pathway maps. EBPI will be useful for extracting biological pathway information from the literature in a high-throughput manner, and can be used for pathway studies, including metabolic engineering.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel step towards the heterologous biosynthesis of paclitaxel: Characterization of T1βOH taxane hydroxylase PACLITAXEL 遗传生物合成的新进展:T1βOH TAXANE 羟化酶的鉴定。
IF 6.8 1区 生物学
Metabolic engineering Pub Date : 2024-09-01 DOI: 10.1016/j.ymben.2024.08.005
{"title":"A novel step towards the heterologous biosynthesis of paclitaxel: Characterization of T1βOH taxane hydroxylase","authors":"","doi":"10.1016/j.ymben.2024.08.005","DOIUrl":"10.1016/j.ymben.2024.08.005","url":null,"abstract":"<div><p>In the quest for innovative cancer therapeutics, paclitaxel remains a cornerstone in clinical oncology. However, its complex biosynthetic pathway, particularly the intricate oxygenation steps, has remained a puzzle in the decades following the characterization of the last taxane hydroxylase. The high divergence and promiscuity of enzymes involved have posed significant challenges. In this study, we adopted an innovative approach, combining <em>in silico</em> methods and functional gene analysis, to shed light on this elusive pathway. Our molecular docking investigations using a library of potential ligands uncovered TB574 as a potential missing enzyme in the paclitaxel biosynthetic pathway, demonstrating auspicious interactions. Complementary in vivo assays utilizing engineered <em>S. cerevisiae</em> strains as novel microbial cell factory consortia not only validated TB574's critical role in forging the elusive paclitaxel intermediate, T5αAc-1β,10β-diol, but also achieved the biosynthesis of paclitaxel precursors at an unprecedented yield including T5αAc-1β,10β-diol with approximately 40 mg/L. This achievement is highly promising, offering a new direction for further exploration of a novel metabolic engineering approaches using microbial consortia. In conclusion, our study not only furthers study the roles of previously uncharacterized enzymes in paclitaxel biosynthesis but also forges a path for pioneering advancements in the complete understanding of paclitaxel biosynthesis and its heterologous production. The characterization of <em>T1βOH</em> underscores a significant leap forward for future advancements in paclitaxel production using heterologous systems to improve cancer treatment and pharmaceutical production, thereby holding immense promise for enhancing the efficacy of cancer therapies and the efficiency of pharmaceutical manufacturing.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096717624001083/pdfft?md5=a00b74a70ccfa7e8b2b2e1d09c950a8f&pid=1-s2.0-S1096717624001083-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering yeast for high-level production of β-farnesene from sole methanol 利用酵母工程技术从单一甲醇中高水平生产 β-法呢烯。
IF 6.8 1区 生物学
Metabolic engineering Pub Date : 2024-08-23 DOI: 10.1016/j.ymben.2024.08.006
{"title":"Engineering yeast for high-level production of β-farnesene from sole methanol","authors":"","doi":"10.1016/j.ymben.2024.08.006","DOIUrl":"10.1016/j.ymben.2024.08.006","url":null,"abstract":"<div><p>Methanol, a rich one-carbon feedstock, can be massively produced from CO<sub>2</sub> by the liquid sunshine route, which is helpful to realize carbon neutrality. β-Farnesene is widely used in the production of polymers, surfactants, lubricants, and also serves as a suitable substitute for jet fuel. Constructing an efficient cell factory is a feasible approach for β-farnesene production through methanol biotransformation. Here, we extensively engineered the methylotrophic yeast <em>Ogataea polymorpha</em> for the efficient bio-production of β-farnesene using methanol as the sole carbon source. Our study demonstrated that sufficient supply of precursor acetyl-CoA and cofactor NADPH in an excellent yeast chassis had a 1.3-fold higher β-farnesene production than that of wild-type background strain. Further optimization of the mevalonate pathway and enhancement of acetyl-CoA supply led to a 7-fold increase in β-farnesene accumulation, achieving the highest reported sesquiterpenoids production (14.7 g/L with a yield of 46 mg/g methanol) from one-carbon feedstock under fed-batch fermentation in bioreactor. This study demonstrates the great potential of engineering <em>O. polymorpha</em> for high-level terpenoid production from methanol.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic engineering of artificially modified transcription factor SmMYB36-VP16 for high-level production of tanshinones and phenolic acids 人工改造转录因子 SmMYB36-VP16 的代谢工程,以高水平生产丹参酮和酚酸。
IF 6.8 1区 生物学
Metabolic engineering Pub Date : 2024-08-22 DOI: 10.1016/j.ymben.2024.08.004
{"title":"Metabolic engineering of artificially modified transcription factor SmMYB36-VP16 for high-level production of tanshinones and phenolic acids","authors":"","doi":"10.1016/j.ymben.2024.08.004","DOIUrl":"10.1016/j.ymben.2024.08.004","url":null,"abstract":"<div><p>Tanshinones and phenolic acids are the two main chemical constituents in <em>Salvia miltiorrhiza</em>, which are used clinically for the treatment of hypertension, coronary heart disease, atherosclerosis, and many other diseases, and have broad medicinal value. The efficient synthesis of the target products of these two metabolites in isolated plant tissues cannot be achieved without the regulation and optimization of metabolic pathways, and transcription factors play an important role as common regulatory elements in plant tissue metabolic engineering. However, most of the regulatory effects are specific to one class of metabolites, or an opposing regulation of two classes of metabolites exists. In this study, an artificially modified transcription factor, SmMYB36-VP16, was constructed to enhance tanshinones and phenolic acids in <em>Salvia miltiorrhiza</em> hair roots simultaneously. Further in combination with the elicitors dual-screening technique, by applying the optimal elicitors screened, the tanshinones content in the transgenic hairy roots of <em>Salvia miltiorrhiza</em> reached 6.44 mg/g DW, which was theoretically 6.08-fold that of the controls without any treatment, and the content of phenolic acids reached 141.03 mg/g DW, which was theoretically 5.05-fold that of the controls without any treatment. The combination of artificially modified transcriptional regulatory and elicitors dual-screening techniques has facilitated the ability of plant isolated tissue cell factories to produce targeted medicinal metabolites. This strategy could be applied to other species, laying the foundation for the production of potential natural products for the medicinal industry.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compartmentalization of pathway sequential enzymes into synthetic protein compartments for metabolic flux optimization in Escherichia coli 在大肠杆菌中将通路顺序酶分隔成合成蛋白质区,以优化代谢通量。
IF 6.8 1区 生物学
Metabolic engineering Pub Date : 2024-08-18 DOI: 10.1016/j.ymben.2024.08.003
{"title":"Compartmentalization of pathway sequential enzymes into synthetic protein compartments for metabolic flux optimization in Escherichia coli","authors":"","doi":"10.1016/j.ymben.2024.08.003","DOIUrl":"10.1016/j.ymben.2024.08.003","url":null,"abstract":"<div><p>Advancing the formation of artificial membraneless compartments with organizational complexity and diverse functionality remains a challenge. Typically, synthetic compartments or membraneless organelles are made up of intrinsically disordered proteins featuring low-complexity sequences or polypeptides with repeated distinctive short linear motifs. In order to expand the repertoire of tools available for the formation of synthetic membraneless compartments, here, a range of DIshevelled and aXin (DIX) or DIX-like domains undergoing head-to-tail polymerization were demonstrated to self-assemble into aggregates and generate synthetic compartments within <em>E. coli</em> cells. Then, synthetic complex compartments with diverse intracellular morphologies were generated by coexpressing different DIX domains. Further, we genetically incorporated a pair of interacting motifs, comprising a homo-dimeric domain and its anchoring peptide, into the DIX domain and cargo proteins, respectively, resulting in the alteration of both material properties and client recruitment of synthetic compartments. As a proof-of-concept, several human milk oligosaccharide biosynthesis pathways were chosen as model systems. The findings indicated that the recruitment of pathway sequential enzymes into synthetic compartments formed by DIX–DIX heterotypic interactions or by DIX domains embedded with specific interacting motifs efficiently boosted metabolic pathway flux and improved the production of desired chemicals. We propose that these synthetic compartment systems present a potent and adaptable toolkit for controlling metabolic flux and facilitating cellular engineering.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking lager's flavour palette by metabolic engineering of Saccharomyces pastorianus for enhanced ethyl ester production 通过对酿酒酵母进行代谢工程改造,提高乙酯产量,开启啤酒风味调色板。
IF 6.8 1区 生物学
Metabolic engineering Pub Date : 2024-08-10 DOI: 10.1016/j.ymben.2024.08.002
{"title":"Unlocking lager's flavour palette by metabolic engineering of Saccharomyces pastorianus for enhanced ethyl ester production","authors":"","doi":"10.1016/j.ymben.2024.08.002","DOIUrl":"10.1016/j.ymben.2024.08.002","url":null,"abstract":"<div><p>Despite being present in trace amounts, ethyl esters play a crucial role as flavour compounds in lager beer. In yeast, ethyl hexanoate, ethyl octanoate and ethyl decanoate, responsible for fruity and floral taste tones, are synthesized from the toxic medium chain acyl-CoA intermediates released by the fatty acid synthase complex during the fatty acid biosynthesis, as a protective mechanism. The aim of this study was to enhance the production of ethyl esters in the hybrid lager brewing yeast <em>Saccharomyces pastorianus</em> by improving the medium chain acyl-CoA precursor supply. Through CRISPR-Cas9-based genetic engineering, specific <em>FAS1</em> and <em>FAS2</em> genes harbouring mutations in domains of the fatty acid synthesis complex were overexpressed in a single and combinatorial approach. These mutations in the <em>ScFAS</em> genes led to specific overproduction of the respective ethyl esters: overexpression of <em>ScFAS1</em><sup><em>I306A</em></sup> and <em>ScFAS2</em><sup><em>G1250S</em></sup> significantly improved ethyl hexanoate production and <em>ScFAS1</em><sup><em>R1834K</em></sup> boosted the ethyl octanoate production. Combinations of <em>ScFAS1</em> mutant genes with <em>ScFAS2</em><sup><em>G1250S</em></sup> greatly enhanced predictably the final ethyl ester concentrations in cultures grown on full malt wort, but also resulted in increased levels of free medium chain fatty acids causing alterations in flavour profiles. Finally, the elevated medium chain fatty acid pool was directed towards the ethyl esters by overexpressing the esterase <em>ScEEB1</em>. The genetically modified <em>S. pastorianus</em> strains were utilized in lager beer production, and the resulting beverage exhibited significantly altered flavour profiles, thereby greatly expanding the possibilities of the flavour palette of lager beers.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096717624001058/pdfft?md5=4c718fd09a35f483d567c9bb6fe5af7c&pid=1-s2.0-S1096717624001058-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic heterogeneity of engineered Escherichia coli Nissle 1917 strains during scale-up simulation 工程大肠杆菌 Nissle 1917 株系在放大模拟过程中的遗传异质性。
IF 6.8 1区 生物学
Metabolic engineering Pub Date : 2024-08-05 DOI: 10.1016/j.ymben.2024.08.001
{"title":"Genetic heterogeneity of engineered Escherichia coli Nissle 1917 strains during scale-up simulation","authors":"","doi":"10.1016/j.ymben.2024.08.001","DOIUrl":"10.1016/j.ymben.2024.08.001","url":null,"abstract":"<div><p>Advanced microbiome therapeutics have emerged as a powerful approach for the treatment of numerous diseases. While the genetic instability of genetically engineered microorganisms is a well-known challenge in the scale-up of biomanufacturing processes, it has not yet been investigated for advanced microbiome therapeutics. Here, the evolution of engineered <em>Escherichia coli</em> Nissle 1917 strains producing Interleukin 2 and Aldafermin were investigated in two strain backgrounds with and without the three error-prone DNA polymerases polB, dinB, and umuDC, which contribute to the mutation rate of the host strain. Whole genome short-read sequencing revealed the genetic instability of the pMUT-based production plasmid after serial passaging for approximately 150 generations using an automated platform for high-throughput microbial evolution in five independent lineages for six distinct strains. While a reduction of the number of mutations of 12%–43% could be observed after the deletion of the error-prone DNA polymerases, the interruption of production-relevant genes could not be prevented, highlighting the need for additional strategies to improve the stability of advanced microbiome therapeutics.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信