Qi Sheng , Shengyang He , Guangjie Liang , Gang Meng , Chunguang Zhao , Aiying Wei , Lining Gou , Jia Liu , Xiaomin Li , Jing Wu , Liming Liu
{"title":"利用胞内瓜氨酸提高大肠杆菌精氨酸产量。","authors":"Qi Sheng , Shengyang He , Guangjie Liang , Gang Meng , Chunguang Zhao , Aiying Wei , Lining Gou , Jia Liu , Xiaomin Li , Jing Wu , Liming Liu","doi":"10.1016/j.ymben.2025.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>L-arginine is a high-value amino acid with widely utilized in the food, feed, and pharmaceutical industries. However, its large-scale biosynthesis remains limited by the low efficiency of current microbial strains. In this study, intracellular citrulline accumulation in <em>Escherichia coli</em>-Arg4 was enhanced by 2.45-, 1.90-, and 1.94-fold through supplementation with monosodium glutamate, monosodium aspartate, and glutamine hydrochloride, respectively. Correspondingly, L-arginine titers increased by 47.85 %, 21.18 %, and 10.66 %. Metabolic flux analysis and transcriptomic profiling indicated that exogenous ammonia donors redirected flux through critical metabolic nodes, including oxaloacetate, α-ketoglutarate, and citrulline, thus increasing precursor availability and enhancing L-arginine biosynthesis. Based on these findings, eight key gene targets, such as <em>gdhA</em>, <em>ppc</em>, <em>icd</em>, <em>aspC</em>, <em>glnA</em>, <em>pyrF</em>, <em>gltA</em>, and <em>argF</em> were identified for pathway optimization. Promoter engineering was subsequently employed to modulate their expression, and heterologous <em>gdhA</em> from <em>Salmonella enterica</em> and <em>glnA</em> from <em>Bacillus subtilis</em> were introduced. Consequently, an optimized strain, <em>E. coli</em>-Arg10, was constructed. Following process optimization in a 1000-L fermenter, the titer, yield and productivity of <em>E. coli</em>-Arg10 was achieved 108.33 g/L, 0.54 g/g, and of 2.26 g/L/h, respectively. These results highlight a scalable and efficient approach for microbial L-arginine production.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"93 ","pages":"Pages 46-59"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved arginine production in Escherichia coli by harnessing the intracellular citrulline\",\"authors\":\"Qi Sheng , Shengyang He , Guangjie Liang , Gang Meng , Chunguang Zhao , Aiying Wei , Lining Gou , Jia Liu , Xiaomin Li , Jing Wu , Liming Liu\",\"doi\":\"10.1016/j.ymben.2025.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>L-arginine is a high-value amino acid with widely utilized in the food, feed, and pharmaceutical industries. However, its large-scale biosynthesis remains limited by the low efficiency of current microbial strains. In this study, intracellular citrulline accumulation in <em>Escherichia coli</em>-Arg4 was enhanced by 2.45-, 1.90-, and 1.94-fold through supplementation with monosodium glutamate, monosodium aspartate, and glutamine hydrochloride, respectively. Correspondingly, L-arginine titers increased by 47.85 %, 21.18 %, and 10.66 %. Metabolic flux analysis and transcriptomic profiling indicated that exogenous ammonia donors redirected flux through critical metabolic nodes, including oxaloacetate, α-ketoglutarate, and citrulline, thus increasing precursor availability and enhancing L-arginine biosynthesis. Based on these findings, eight key gene targets, such as <em>gdhA</em>, <em>ppc</em>, <em>icd</em>, <em>aspC</em>, <em>glnA</em>, <em>pyrF</em>, <em>gltA</em>, and <em>argF</em> were identified for pathway optimization. Promoter engineering was subsequently employed to modulate their expression, and heterologous <em>gdhA</em> from <em>Salmonella enterica</em> and <em>glnA</em> from <em>Bacillus subtilis</em> were introduced. Consequently, an optimized strain, <em>E. coli</em>-Arg10, was constructed. Following process optimization in a 1000-L fermenter, the titer, yield and productivity of <em>E. coli</em>-Arg10 was achieved 108.33 g/L, 0.54 g/g, and of 2.26 g/L/h, respectively. These results highlight a scalable and efficient approach for microbial L-arginine production.</div></div>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":\"93 \",\"pages\":\"Pages 46-59\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S109671762500148X\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109671762500148X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Improved arginine production in Escherichia coli by harnessing the intracellular citrulline
L-arginine is a high-value amino acid with widely utilized in the food, feed, and pharmaceutical industries. However, its large-scale biosynthesis remains limited by the low efficiency of current microbial strains. In this study, intracellular citrulline accumulation in Escherichia coli-Arg4 was enhanced by 2.45-, 1.90-, and 1.94-fold through supplementation with monosodium glutamate, monosodium aspartate, and glutamine hydrochloride, respectively. Correspondingly, L-arginine titers increased by 47.85 %, 21.18 %, and 10.66 %. Metabolic flux analysis and transcriptomic profiling indicated that exogenous ammonia donors redirected flux through critical metabolic nodes, including oxaloacetate, α-ketoglutarate, and citrulline, thus increasing precursor availability and enhancing L-arginine biosynthesis. Based on these findings, eight key gene targets, such as gdhA, ppc, icd, aspC, glnA, pyrF, gltA, and argF were identified for pathway optimization. Promoter engineering was subsequently employed to modulate their expression, and heterologous gdhA from Salmonella enterica and glnA from Bacillus subtilis were introduced. Consequently, an optimized strain, E. coli-Arg10, was constructed. Following process optimization in a 1000-L fermenter, the titer, yield and productivity of E. coli-Arg10 was achieved 108.33 g/L, 0.54 g/g, and of 2.26 g/L/h, respectively. These results highlight a scalable and efficient approach for microbial L-arginine production.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.