Yan Guo,Liyang Zhou,Wanshu Lai,Zhilan Qian,Haishuang Yu,Menghao Cai
{"title":"Metabolic and enzyme rewiring enables high-production of vanillin in unconventional yeast.","authors":"Yan Guo,Liyang Zhou,Wanshu Lai,Zhilan Qian,Haishuang Yu,Menghao Cai","doi":"10.1016/j.ymben.2025.10.002","DOIUrl":null,"url":null,"abstract":"Vanillin is an aromatic flavor compound widely used in the food, pharmaceutical, and cosmetic industries. Microbial biosynthesis offers a sustainable alternative to traditional plant extraction and chemical synthesis; however, the susceptibility of vanillin to redox reactions and the weak enzyme activity in cells severely limit the vanillin production capacity by microbial biosynthesis. This study presents the first successful attempt at de novo synthesis of vanillin in the unconventional yeast Komagataella phaffii. The initial titer was quite low (0.5 mg/L), but removal of 14 endogenous oxidoreductases to block vanillin conversion resulted in an 11.1-fold improvement in vanillin production. The combination of pathway rewiring and cofactor (nicotinamide adenine dinucleotide phosphate [NADPH] and S-adenosylmethionine) regeneration redirected the metabolic flux toward vanillin synthesis and achieved a further 19.9-fold improvement in vanillin production. Rational rewiring of the rate-limiting enzyme, caffeic acid O-methyltransferase (NtCOMT), generated a dominant mutant NtCOMTN312A/H315N from 70 variants, which promoted activity by 49.7% and prevented intermediate accumulation. These strategies eventually enabled the co-coupling of de novo biosynthesis and caffeic acid conversion, achieving the highest reported production of vanillin (1055.9 mg/L) by K. phaffii fermentation in a bioreactor. These findings highlight the potential of unconventional yeast as a chassis host for aromatic aldehyde synthesis and the construction of a versatile microbial platform for the production of carbonyl compounds.","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"40 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2025.10.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vanillin is an aromatic flavor compound widely used in the food, pharmaceutical, and cosmetic industries. Microbial biosynthesis offers a sustainable alternative to traditional plant extraction and chemical synthesis; however, the susceptibility of vanillin to redox reactions and the weak enzyme activity in cells severely limit the vanillin production capacity by microbial biosynthesis. This study presents the first successful attempt at de novo synthesis of vanillin in the unconventional yeast Komagataella phaffii. The initial titer was quite low (0.5 mg/L), but removal of 14 endogenous oxidoreductases to block vanillin conversion resulted in an 11.1-fold improvement in vanillin production. The combination of pathway rewiring and cofactor (nicotinamide adenine dinucleotide phosphate [NADPH] and S-adenosylmethionine) regeneration redirected the metabolic flux toward vanillin synthesis and achieved a further 19.9-fold improvement in vanillin production. Rational rewiring of the rate-limiting enzyme, caffeic acid O-methyltransferase (NtCOMT), generated a dominant mutant NtCOMTN312A/H315N from 70 variants, which promoted activity by 49.7% and prevented intermediate accumulation. These strategies eventually enabled the co-coupling of de novo biosynthesis and caffeic acid conversion, achieving the highest reported production of vanillin (1055.9 mg/L) by K. phaffii fermentation in a bioreactor. These findings highlight the potential of unconventional yeast as a chassis host for aromatic aldehyde synthesis and the construction of a versatile microbial platform for the production of carbonyl compounds.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.