Jin Luo, Elena Efimova, Ville Santala, Suvi Santala
{"title":"Metabolic engineering of Acinetobacter baylyi ADP1 for efficient utilization of pentose sugars and production of glutamic acid.","authors":"Jin Luo, Elena Efimova, Ville Santala, Suvi Santala","doi":"10.1016/j.ymben.2025.10.001","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient utilization of pentose sugars is critical for advancing sustainable biomanufacturing using lignocellulose. However, many host strains capable of consuming glucose and lignin-derived monomers are unable to utilize pentose sugars. Here, we engineered Acinetobacter baylyi ADP1 for the utilization of D-xylose and L-arabinose. We first modelled different pentose utilization pathways using flux balance analysis to choose the most optimal pathway. A marker-free approach combining transformation and selection facilitated the integration of the pentose catabolic gene clusters of the selected Weimberg pathway into the A. baylyi genome, generating strains capable of efficiently utilizing both D-xylose and L-arabinose as sole carbon sources without any additional engineering or adaptation. For D-xylose, the cells achieved the highest growth rate (μ=0.73 h<sup>-1</sup>) reported to date for non-native hosts engineered for pentose utilization. For L-arabinose, a growth rate of μ=0.40 h<sup>-1</sup> was achieved, which also surpassed the growth rate on a native substrate of A. baylyi, glucose (μ=0.37 h<sup>-1</sup>). Importantly, pentose utilization occurred simultaneously with glucose utilization. We then applied metabolic flux analysis using <sup>13</sup>C labeled xylose to reveal D-xylose metabolism in the engineered strain. To demonstrate the potential for bioproduction, L-glutamate was selected as a target compound. Deletion of sucAB and gabT, and the overexpression of gdhA enabled L-glutamate production. With the engineered strain, a carbon yield of 34% during co-utilization with succinate and 70% via whole-cell catalysis using resting cells was achieved. Notably, L-glutamate production directly from industrially relevant hemicellulose hydrolysate was demonstrated. This study establishes a robust platform for pentose utilization and bioproduction in A. baylyi ADP1 and highlights the potential for metabolic optimization.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2025.10.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient utilization of pentose sugars is critical for advancing sustainable biomanufacturing using lignocellulose. However, many host strains capable of consuming glucose and lignin-derived monomers are unable to utilize pentose sugars. Here, we engineered Acinetobacter baylyi ADP1 for the utilization of D-xylose and L-arabinose. We first modelled different pentose utilization pathways using flux balance analysis to choose the most optimal pathway. A marker-free approach combining transformation and selection facilitated the integration of the pentose catabolic gene clusters of the selected Weimberg pathway into the A. baylyi genome, generating strains capable of efficiently utilizing both D-xylose and L-arabinose as sole carbon sources without any additional engineering or adaptation. For D-xylose, the cells achieved the highest growth rate (μ=0.73 h-1) reported to date for non-native hosts engineered for pentose utilization. For L-arabinose, a growth rate of μ=0.40 h-1 was achieved, which also surpassed the growth rate on a native substrate of A. baylyi, glucose (μ=0.37 h-1). Importantly, pentose utilization occurred simultaneously with glucose utilization. We then applied metabolic flux analysis using 13C labeled xylose to reveal D-xylose metabolism in the engineered strain. To demonstrate the potential for bioproduction, L-glutamate was selected as a target compound. Deletion of sucAB and gabT, and the overexpression of gdhA enabled L-glutamate production. With the engineered strain, a carbon yield of 34% during co-utilization with succinate and 70% via whole-cell catalysis using resting cells was achieved. Notably, L-glutamate production directly from industrially relevant hemicellulose hydrolysate was demonstrated. This study establishes a robust platform for pentose utilization and bioproduction in A. baylyi ADP1 and highlights the potential for metabolic optimization.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.