{"title":"Edible fungus Fusarium venenatum: advances, challenges, and engineering strategies for future food production","authors":"Sheng Tong, Qiyu Qiu, Jiaying Gao, Jiali Yu, Yaobo Xu, Zhihua Liao","doi":"10.1016/j.ymben.2025.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>By 2050, the global population is projected to reach 9.7 billion, necessitating a 70 % increase in traditional agricultural output to meet growing demands. However, critical constraints are emerging as arable land and water resources approach their sustainable utilization thresholds. In this context, ensuring safe, efficient, and sustainable food production has become a pivotal issue intertwined with national economy and people's livelihood. Microbial manufacturing based on microbial chassis and synthetic biology technology represents a transformative approach to future food production. Notably, the edible filamentous fungus <em>Fusarium venenatum</em> serves as an ideal chassis for next-generation future food biomanufacturing. However, there has been a lack of systematic reviews specifically focusing on the development of synthetic biology tools, chassis engineering, and chassis applications for this strain. This paper systematically summarizes the latest significant progress, from the perspectives mentioned above, in the use of <em>F. venenatum</em> for future food biomanufacturing. Furthermore, it discusses potential development directions and challenges, and proposes some available strategies, intending to provide ideas and guidance for the further development of <em>F. venenatum</em>-based future food production systems.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"93 ","pages":"Pages 115-127"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717625001545","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
By 2050, the global population is projected to reach 9.7 billion, necessitating a 70 % increase in traditional agricultural output to meet growing demands. However, critical constraints are emerging as arable land and water resources approach their sustainable utilization thresholds. In this context, ensuring safe, efficient, and sustainable food production has become a pivotal issue intertwined with national economy and people's livelihood. Microbial manufacturing based on microbial chassis and synthetic biology technology represents a transformative approach to future food production. Notably, the edible filamentous fungus Fusarium venenatum serves as an ideal chassis for next-generation future food biomanufacturing. However, there has been a lack of systematic reviews specifically focusing on the development of synthetic biology tools, chassis engineering, and chassis applications for this strain. This paper systematically summarizes the latest significant progress, from the perspectives mentioned above, in the use of F. venenatum for future food biomanufacturing. Furthermore, it discusses potential development directions and challenges, and proposes some available strategies, intending to provide ideas and guidance for the further development of F. venenatum-based future food production systems.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.