MathematikaPub Date : 2024-09-30DOI: 10.1112/mtk.12281
Kübra Benli, Ertan Elma, Nathan Ng
{"title":"A discrete mean value of the Riemann zeta function","authors":"Kübra Benli, Ertan Elma, Nathan Ng","doi":"10.1112/mtk.12281","DOIUrl":"https://doi.org/10.1112/mtk.12281","url":null,"abstract":"<p>In this work, we estimate the sum\u0000\u0000 </p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12281","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2024-09-30DOI: 10.1112/mtk.12282
Heejong Lee, Seungsu Lee, Kiseok Yeon
{"title":"The local solubility for homogeneous polynomials with random coefficients over thin sets","authors":"Heejong Lee, Seungsu Lee, Kiseok Yeon","doi":"10.1112/mtk.12282","DOIUrl":"https://doi.org/10.1112/mtk.12282","url":null,"abstract":"<p>Let <span></span><math></math> and <span></span><math></math> be natural numbers greater or equal to 2. Let <span></span><math></math> be a homogeneous polynomial in <span></span><math></math> variables of degree <span></span><math></math> with integer coefficients <span></span><math></math>, where <span></span><math></math> denotes the inner product, and <span></span><math></math> denotes the Veronese embedding with <span></span><math></math>. Consider a variety <span></span><math></math> in <span></span><math></math>, defined by <span></span><math></math>. In this paper, we examine a set of integer vectors <span></span><math></math>, defined by\u0000\u0000 </p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2024-09-26DOI: 10.1112/mtk.12280
António Girão, Oliver Janzer
{"title":"Tiling with monochromatic bipartite graphs of bounded maximum degree","authors":"António Girão, Oliver Janzer","doi":"10.1112/mtk.12280","DOIUrl":"https://doi.org/10.1112/mtk.12280","url":null,"abstract":"<p>We prove that for any <span></span><math></math>, there exists a constant <span></span><math></math> such that the following is true. Let <span></span><math></math> be an infinite sequence of bipartite graphs such that <span></span><math></math> and <span></span><math></math> hold for all <span></span><math></math>. Then, in any <span></span><math></math>-edge-coloured complete graph <span></span><math></math>, there is a collection of at most <span></span><math></math> monochromatic subgraphs, each of which is isomorphic to an element of <span></span><math></math>, whose vertex sets partition <span></span><math></math>. This proves a conjecture of Corsten and Mendonça in a strong form and generalises results on the multi-colour Ramsey numbers of bounded-degree bipartite graphs. It also settles the bipartite case of a general conjecture of Grinshpun and Sárközy.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12280","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Poissonian pair correlation for higher dimensional real sequences","authors":"Tanmoy Bera, Mithun Kumar Das, Anirban Mukhopadhyay","doi":"10.1112/mtk.12283","DOIUrl":"https://doi.org/10.1112/mtk.12283","url":null,"abstract":"<p>In this article, we examine the Poissonian pair correlation (PPC) statistic for higher dimensional real sequences. Specifically, we demonstrate that for <span></span><math></math>, almost all <span></span><math></math>, the sequence <span></span><math></math> in <span></span><math></math> has PPC conditionally on the additive energy bound of <span></span><math></math>. This bound is more relaxed compared to the additive energy bound for one dimension as discussed in [Aistleitner, El-Baz, and Munsch, Geom. Funct. Anal. <b>31</b> (2021), 483–512]. More generally, we derive the PPC for <span></span><math></math> for almost all <span></span><math></math>. As a consequence we establish the metric PPC for <span></span><math></math> provided that all of the <span></span><math></math> are greater than two.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12283","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2024-09-06DOI: 10.1112/mtk.12278
J. Robert Johnson, Mark Walters
{"title":"Optimal resistor networks","authors":"J. Robert Johnson, Mark Walters","doi":"10.1112/mtk.12278","DOIUrl":"https://doi.org/10.1112/mtk.12278","url":null,"abstract":"<p>Given a graph on <span></span><math></math> vertices with <span></span><math></math> edges, each of unit resistance, how small can the average resistance between pairs of vertices be? There are two very plausible extremal constructions — graphs like a star, and graphs which are close to regular — with the transition between them occurring when the average degree is 3. However, in this paper, we show that there are significantly better constructions for a range of average degree including average degree near 3. A key idea is to link this question to a analogous question about rooted graphs — namely ‘which rooted graph minimises the average resistance to the root?’. The rooted case is much simpler to analyse that the unrooted, and the one of the main results of this paper is that the two cases are asymptotically equivalent.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12278","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2024-08-29DOI: 10.1112/mtk.12279
Pedro-José Cazorla García
{"title":"Asymptotic Fermat's last theorem for a family of equations of signature","authors":"Pedro-José Cazorla García","doi":"10.1112/mtk.12279","DOIUrl":"https://doi.org/10.1112/mtk.12279","url":null,"abstract":"<p>In this paper, we study the integer solutions of a family of Fermat-type equations of signature <span></span><math></math>, <span></span><math></math>. We provide an algorithmically testable set of conditions which, if satisfied, imply the existence of a constant <span></span><math></math> such that if <span></span><math></math>, there are no solutions <span></span><math></math> of the equation. Our methods use the modular method for Diophantine equations, along with level lowering and Galois theory.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12279","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2024-08-27DOI: 10.1112/mtk.12274
Gergely Ambrus, Rainie Bozzai
{"title":"Colorful vector balancing","authors":"Gergely Ambrus, Rainie Bozzai","doi":"10.1112/mtk.12274","DOIUrl":"https://doi.org/10.1112/mtk.12274","url":null,"abstract":"<p>We extend classical estimates for the vector balancing constant of <span></span><math></math> equipped with the Euclidean and the maximum norms proved in the 1980s by showing that for <span></span><math></math> and <span></span><math></math>, given vector families <span></span><math></math> with <span></span><math></math>, one may select vectors <span></span><math></math> with\u0000\u0000 </p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12274","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2024-08-26DOI: 10.1112/mtk.12275
R. C. Vaughan, Yu. G. Zarhin
{"title":"A note on the squarefree density of polynomials","authors":"R. C. Vaughan, Yu. G. Zarhin","doi":"10.1112/mtk.12275","DOIUrl":"https://doi.org/10.1112/mtk.12275","url":null,"abstract":"<p>The conjectured squarefree density of an integral polynomial <span></span><math></math> in <span></span><math></math> variables is an Euler product <span></span><math></math> which can be considered as a product of local densities. We show that a necessary and sufficient condition for <span></span><math></math> to be 0 when <span></span><math></math> is a polynomial in <span></span><math></math> variables over the integers, is that either there is a prime <span></span><math></math> such that the values of <span></span><math></math> at all integer points are divisible by <span></span><math></math> or the polynomial is not squarefree as a polynomial. We also show that generally the upper squarefree density <span></span><math></math> satisfies <span></span><math></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12275","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2024-08-25DOI: 10.1112/mtk.12277
Thomas Karam
{"title":"The interplay between bounded ranks of tensors arising from partitions","authors":"Thomas Karam","doi":"10.1112/mtk.12277","DOIUrl":"https://doi.org/10.1112/mtk.12277","url":null,"abstract":"<p>Let <span></span><math></math> be integers. Using a fragmentation technique, we characterise <span></span><math></math>-tuples <span></span><math></math> of non-empty families of partitions of <span></span><math></math> such that it suffices that an order-<span></span><math></math> tensor has bounded <span></span><math></math>-rank for each <span></span><math></math> for it to have bounded <span></span><math></math>-rank. On the way, we prove power lower bounds on suitable products of diagonal tensors, providing a qualitative answer to a question of Naslund.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2024-08-25DOI: 10.1112/mtk.12276
Tomasz Kowalczyk, Piotr Miska
{"title":"On Waring numbers of henselian rings","authors":"Tomasz Kowalczyk, Piotr Miska","doi":"10.1112/mtk.12276","DOIUrl":"https://doi.org/10.1112/mtk.12276","url":null,"abstract":"<p>Let <span></span><math></math> be a positive integer. Let <span></span><math></math> be a henselian local ring with residue field <span></span><math></math> of <span></span><math></math>th level <span></span><math></math>. We give some upper and lower bounds for the <span></span><math></math>th Waring number <span></span><math></math> in terms of <span></span><math></math> and <span></span><math></math>. In large number of cases, we are able to compute <span></span><math></math>. Similar results for the <span></span><math></math>th Waring number of the total ring of fractions of <span></span><math></math> are obtained. We then provide applications. In particular, we compute <span></span><math></math> and <span></span><math></math> for <span></span><math></math> and any prime <span></span><math></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}