On convex bodies in , , with directly congruent projections

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2025-02-06 DOI:10.1112/mtk.70011
Reema A. Sbeih
{"title":"On convex bodies in , , with directly congruent projections","authors":"Reema A. Sbeih","doi":"10.1112/mtk.70011","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math></math> and let <span></span><math></math> and <span></span><math></math> be two convex bodies in <span></span><math></math> such that their orthogonal projections <span></span><math></math> and <span></span><math></math> onto any <span></span><math></math>-dimensional subspace <span></span><math></math> are directly congruent, that is, there exists a rotation <span></span><math></math> and a vector <span></span><math></math> such that <span></span><math></math>. Assume also that the 2-dimensional projections of <span></span><math></math> and <span></span><math></math> are pairwise different and they do not have <span></span><math></math>-symmetries. Then <span></span><math></math> and <span></span><math></math> are congruent. We also prove an analogous more general result about twice differentiable functions on the unit sphere in <span></span><math></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.70011","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let and let and be two convex bodies in such that their orthogonal projections and onto any -dimensional subspace are directly congruent, that is, there exists a rotation and a vector such that . Assume also that the 2-dimensional projections of and are pairwise different and they do not have -symmetries. Then and are congruent. We also prove an analogous more general result about twice differentiable functions on the unit sphere in .

在凸体上,有直接全等的投影
设和为两个凸体它们在任意维子空间上的正交投影是直接同余的,也就是说,存在一个旋转和一个向量。同时假定和的二维投影是两两不同的,它们不具有非对称性。然后和是相等的。我们还证明了单位球上二次可微函数的一个类似的更一般的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信