关于维数为(1,2,2,1)的奇异Brascamp-Lieb不等式族

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-12-08 DOI:10.1112/mtk.70003
Fred Yu-Hsiang Lin
{"title":"关于维数为(1,2,2,1)的奇异Brascamp-Lieb不等式族","authors":"Fred Yu-Hsiang Lin","doi":"10.1112/mtk.70003","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the triangular Hilbert transform, we classify a certain family of singular Brascamp–Lieb forms which we associate with the dimension datum (1,2,2,1). We determine the exact range of Lebesgue exponents, for which one has singular Brascamp–Lieb inequalities within this family. The remaining observations concern counter examples to boundedness. We compare with a counter-example showing that the triangular Hilbert form does not satisfy singular Brascamp–Lieb bounds in the endpoints.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70003","citationCount":"0","resultStr":"{\"title\":\"On the family of singular Brascamp–Lieb inequalities with dimension datum (1,2,2,1)\",\"authors\":\"Fred Yu-Hsiang Lin\",\"doi\":\"10.1112/mtk.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by the triangular Hilbert transform, we classify a certain family of singular Brascamp–Lieb forms which we associate with the dimension datum (1,2,2,1). We determine the exact range of Lebesgue exponents, for which one has singular Brascamp–Lieb inequalities within this family. The remaining observations concern counter examples to boundedness. We compare with a counter-example showing that the triangular Hilbert form does not satisfy singular Brascamp–Lieb bounds in the endpoints.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.70003\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.70003","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在三角形希尔伯特变换的激励下,我们分类了一类奇异的Brascamp-Lieb形式,并将其与维数(1,2,2,1)联系起来。我们确定了Lebesgue指数的确切范围,其中一个在这个家族中具有奇异的Brascamp-Lieb不等式。其余的观察涉及有界性的反例。通过与反例的比较,证明了三角形Hilbert形式在端点上不满足奇异Brascamp-Lieb界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the family of singular Brascamp–Lieb inequalities with dimension datum (1,2,2,1)

On the family of singular Brascamp–Lieb inequalities with dimension datum (1,2,2,1)

Motivated by the triangular Hilbert transform, we classify a certain family of singular Brascamp–Lieb forms which we associate with the dimension datum (1,2,2,1). We determine the exact range of Lebesgue exponents, for which one has singular Brascamp–Lieb inequalities within this family. The remaining observations concern counter examples to boundedness. We compare with a counter-example showing that the triangular Hilbert form does not satisfy singular Brascamp–Lieb bounds in the endpoints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信