Diagonal cubic forms and the large sieve

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2025-01-02 DOI:10.1112/mtk.70008
Victor Y. Wang
{"title":"Diagonal cubic forms and the large sieve","authors":"Victor Y. Wang","doi":"10.1112/mtk.70008","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math></math> be the number of integral zeros <span></span><math></math> of <span></span><math></math>. Works of Hooley and Heath-Brown imply <span></span><math></math>, if one assumes automorphy and grand Riemann hypothesis for certain Hasse–Weil <span></span><math></math>-functions. Assuming instead a natural large sieve inequality, we recover the same bound on <span></span><math></math>. This is part of a more general statement, for diagonal cubic forms in <span></span><math></math> variables, where we allow approximations to Hasse–Weil <span></span><math></math>-functions.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.70008","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let be the number of integral zeros of . Works of Hooley and Heath-Brown imply , if one assumes automorphy and grand Riemann hypothesis for certain Hasse–Weil -functions. Assuming instead a natural large sieve inequality, we recover the same bound on . This is part of a more general statement, for diagonal cubic forms in variables, where we allow approximations to Hasse–Weil -functions.

对角立方形式和大筛子
的积分0的个数。Hooley和Heath-Brown的著作暗示,对于某些Hasse-Weil函数,如果假设自同构和大黎曼假设。假设一个自然的大筛不等式,我们恢复相同的界。这是一个更一般的陈述的一部分,对于变量的对角三次形式,我们允许近似于Hasse-Weil函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信