{"title":"The radial symmetry of minimizers to the weighted Dirichlet energy in","authors":"David Kalaj","doi":"10.1112/mtk.70007","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math></math> and <span></span><math></math> be annuli in <span></span><math></math>. Let <span></span><math></math>, and assume that <span></span><math></math> is the class of Sobolev <span></span><math></math> homeomorphisms of <span></span><math></math> onto <span></span><math></math>. Then, we consider the following Dirichlet-type energy of <span></span><math></math>:\n\n </p><p>For general <span></span><math></math>, we minimize the Dirichlet-type integral <span></span><math></math> throughout the class of radial mappings between given annuli, and this minimum always exists for <span></span><math></math>. For <span></span><math></math>, the image annulus cannot be too thick, which is opposite to the Nitsche-type phenomenon known for the standard Dirichlet energy, where the image annulus cannot be too thin.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.70007","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let and be annuli in . Let , and assume that is the class of Sobolev homeomorphisms of onto . Then, we consider the following Dirichlet-type energy of :
For general , we minimize the Dirichlet-type integral throughout the class of radial mappings between given annuli, and this minimum always exists for . For , the image annulus cannot be too thick, which is opposite to the Nitsche-type phenomenon known for the standard Dirichlet energy, where the image annulus cannot be too thin.
期刊介绍:
Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.