MicrobiomePub Date : 2024-09-10DOI: 10.1186/s40168-024-01864-3
Nicholas Nastasi, Ashleigh Bope, Marit E. Meyer, John M. Horack, Karen C. Dannemiller
{"title":"Predicting how varying moisture conditions impact the microbiome of dust collected from the International Space Station","authors":"Nicholas Nastasi, Ashleigh Bope, Marit E. Meyer, John M. Horack, Karen C. Dannemiller","doi":"10.1186/s40168-024-01864-3","DOIUrl":"https://doi.org/10.1186/s40168-024-01864-3","url":null,"abstract":"The commercialization of space travel will soon lead to many more people living and working in unique built environments similar to the International Space Station, which is a specialized closed environment that contains its own indoor microbiome. Unintended microbial growth can occur in these environments as in buildings on Earth from elevated moisture, such as from a temporary ventilation system failure. This growth can drive negative health outcomes and degrade building materials. We need a predictive approach for modeling microbial growth in these critical indoor spaces. Here, we demonstrate that even short exposures to varying elevated relative humidity can facilitate rapid microbial growth and microbial community composition changes in dust from spacecraft. We modeled fungal growth in dust from the International Space Station using the time-of-wetness framework with activation and deactivation limited growth occurring at 85% and 100% relative humidity, respectively. Fungal concentrations ranged from an average of 4.4 × 106 spore equivalents per milligram of dust in original dust with no exposure to relative humidity to up to 2.1 × 1010 when exposed to 100% relative humidity for 2 weeks. As relative humidity and time-elevated increased, fungal diversity was significantly reduced for both alpha (Q < 0.05) and beta (R2 = 0.307, P = 0.001) diversity metrics. Bacteria were unable to be modeled using the time-of-wetness framework. However, bacterial communities did change based on constant relative humidity incubations for both beta (R2 = 0.22, P = 0.001) and alpha diversity decreasing with increasing moisture starting at 85% relative humidity (Q < 0.05). Our results demonstrate that moisture conditions can be used to develop and predict changes in fungal growth and composition onboard human-occupied spacecraft. This predictive model can be expanded upon to include other spacecraft environmental factors such as microgravity, elevated carbon dioxide conditions, and radiation exposure. Understanding microbial growth in spacecraft can help better protect astronaut health, fortify spacecraft integrity, and promote planetary protection as human activity increases in low-Earth orbit, the moon, Mars, and beyond. ","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":15.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enrichment of novel entomopathogenic Pseudomonas species enhances willow resistance to leaf beetles","authors":"Haitao Wang, Fengjuan Zhang, Yali Zhang, Mengnan Wang, Yiqiu Zhang, Jiang Zhang","doi":"10.1186/s40168-024-01884-z","DOIUrl":"https://doi.org/10.1186/s40168-024-01884-z","url":null,"abstract":"Plants have evolved various defense mechanisms against insect herbivores, including the formation of physical barriers, the synthesis of toxic metabolites, and the activation of phytohormone responses. Although plant-associated microbiota influence plant growth and health, whether they play a role in plant defense against insect pests in natural ecosystems is unknown. Here, we show that leaves of beetle-damaged weeping willow (Salix babylonica) trees are more resistant to the leaf beetle Plagiodera versicolora (Coleoptera) than those of undamaged leaves. Bacterial community transplantation experiments demonstrated that plant-associated microbiota from the beetle-damaged willow contribute to the resistance of the beetle-damaged willow to P. versicolora. Analysis of the composition and abundance of the microbiome revealed that Pseudomonas spp. is significantly enriched in the phyllosphere, roots, and rhizosphere soil of beetle-damaged willows relative to undamaged willows. From a total of 49 Pseudomonas strains isolated from willows and rhizosphere soil, we identified seven novel Pseudomonas strains that are toxic to P. versicolora. Moreover, re-inoculation of a synthetic microbial community (SynCom) with these Pseudomonas strains enhances willow resistance to P. versicolora. Collectively, our data reveal that willows can exploit specific entomopathogenic bacteria to enhance defense against P. versicolora, suggesting that there is a complex interplay among plants, insects, and plant-associated microbiota in natural ecosystems. ","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":15.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicrobiomePub Date : 2024-09-07DOI: 10.1186/s40168-024-01881-2
Fuyong Li, Junhong Liu, María X Maldonado-Gómez, Steven A Frese, Michael G Gänzle, Jens Walter
{"title":"Highly accurate and sensitive absolute quantification of bacterial strains in human fecal samples.","authors":"Fuyong Li, Junhong Liu, María X Maldonado-Gómez, Steven A Frese, Michael G Gänzle, Jens Walter","doi":"10.1186/s40168-024-01881-2","DOIUrl":"10.1186/s40168-024-01881-2","url":null,"abstract":"<p><strong>Background: </strong>Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples.</p><p><strong>Results: </strong>Using strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 10<sup>4</sup> cells/g feces) and linearity (R<sup>2</sup> > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016<sup> T</sup>, resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 10<sup>3</sup> cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016<sup> T</sup> during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing).</p><p><strong>Conclusions: </strong>Based on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":13.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380787/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sex-specific responses of Taxus mairei to UV-B radiation involved altering the interactions between the microbiota assembly and host secondary metabolism.","authors":"Hongshan Zhang, Kailin Hou, Xueshuang Liang, Wanting Lin, Ruoyun Ma, Yue Zang, Xiaori Zhan, Mingshuang Wang, Shangguo Feng, Qicai Ying, Bingsong Zheng, Huizhong Wang, Chenjia Shen","doi":"10.1186/s40168-024-01882-1","DOIUrl":"10.1186/s40168-024-01882-1","url":null,"abstract":"<p><strong>Background: </strong>To adapt to constantly changing environments, ancient gymnosperms have coevolved with diverse endophytic fungi that are essential for the fitness and adaptability of the plant host. However, the effect of sex on plant-endophyte interactions in response to environmental stressors remains unknown. RNA-seq integrated with ITS analysis was applied to reveal the potential mechanisms underlying the sex-specific responses of Taxus mairei to ultraviolet (UV)-B radiation.</p><p><strong>Results: </strong>Enrichment analysis suggested that sex influenced the expression of several genes related to the oxidation-reduction system, which might play potential roles in sex-mediated responses to UV-B radiations. ITS-seq analysis clarified the effects of UV-B radiation and sex on the composition of endophytic fungal communities. Sex influenced various secondary metabolic pathways, thereby providing chemicals for T. mairei host to produce attractants and/or inhibitors to filter microbial taxa. Analysis of fungal biomarkers suggested that UV-B radiation reduced the effect of sex on fungal communities. Moreover, Guignardia isolate #1 was purified to investigate the role of endophytic fungi in sex-mediated responses to UV-B radiation. Inoculation with spores produced by isolate #1 significantly altered various oxidation-reduction systems of the host by regulating the expression of APX2, GST7 NCED1, ZE1, CS1, and CM1.</p><p><strong>Conclusion: </strong>These results revealed the roles of endophytic fungi in sex-mediated responses to UV-B radiation and provided novel insights into the sex-specific responses of Taxus trees to environmental stressors. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":13.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380788/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicrobiomePub Date : 2024-09-07DOI: 10.1186/s40168-024-01890-1
Xingsheng Yang, Kai Feng, Shang Wang, Mengting Maggie Yuan, Xi Peng, Qing He, Danrui Wang, Wenli Shen, Bo Zhao, Xiongfeng Du, Yingcheng Wang, Linlin Wang, Dong Cao, Wenzong Liu, Jianjun Wang, Ye Deng
{"title":"Unveiling the deterministic dynamics of microbial meta-metabolism: a multi-omics investigation of anaerobic biodegradation.","authors":"Xingsheng Yang, Kai Feng, Shang Wang, Mengting Maggie Yuan, Xi Peng, Qing He, Danrui Wang, Wenli Shen, Bo Zhao, Xiongfeng Du, Yingcheng Wang, Linlin Wang, Dong Cao, Wenzong Liu, Jianjun Wang, Ye Deng","doi":"10.1186/s40168-024-01890-1","DOIUrl":"10.1186/s40168-024-01890-1","url":null,"abstract":"<p><strong>Background: </strong>Microbial anaerobic metabolism is a key driver of biogeochemical cycles, influencing ecosystem function and health of both natural and engineered environments. However, the temporal dynamics of the intricate interactions between microorganisms and the organic metabolites are still poorly understood. Leveraging metagenomic and metabolomic approaches, we unveiled the principles governing microbial metabolism during a 96-day anaerobic bioreactor experiment.</p><p><strong>Results: </strong>During the turnover and assembly of metabolites, homogeneous selection was predominant, peaking at 84.05% on day 12. Consistent dynamic coordination between microbes and metabolites was observed regarding their composition and assembly processes. Our findings suggested that microbes drove deterministic metabolite turnover, leading to consistent molecular conversions across parallel reactors. Moreover, due to the more favorable thermodynamics of N-containing organic biotransformations, microbes preferentially carried out sequential degradations from N-containing to S-containing compounds. Similarly, the metabolic strategy of C18 lipid-like molecules could switch from synthesis to degradation due to nutrient exhaustion and thermodynamical disadvantage. This indicated that community biotransformation thermodynamics emerged as a key regulator of both catabolic and synthetic metabolisms, shaping metabolic strategy shifts at the community level. Furthermore, the co-occurrence network of microbes-metabolites was structured around microbial metabolic functions centered on methanogenesis, with CH<sub>4</sub> as a network hub, connecting with 62.15% of total nodes as 1st and 2nd neighbors. Microbes aggregate molecules with different molecular traits and are modularized depending on their metabolic abilities. They established increasingly positive relationships with high-molecular-weight molecules, facilitating resource acquisition and energy utilization. This metabolic complementarity and substance exchange further underscored the cooperative nature of microbial interactions.</p><p><strong>Conclusions: </strong>All results revealed three key rules governing microbial anaerobic degradation. These rules indicate that microbes adapt to environmental conditions according to their community-level metabolic trade-offs and synergistic metabolic functions, further driving the deterministic dynamics of molecular composition. This research offers valuable insights for enhancing the prediction and regulation of microbial activities and carbon flow in anaerobic environments. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":13.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolome-driven microbiome assembly determining the health of ginger crop (Zingiber officinale L. Roscoe) against rhizome rot.","authors":"Wenbo Wang, Nayanci Portal-Gonzalez, Xia Wang, Jialin Li, Hui Li, Roxana Portieles, Orlando Borras-Hidalgo, Wenxing He, Ramon Santos-Bermudez","doi":"10.1186/s40168-024-01885-y","DOIUrl":"10.1186/s40168-024-01885-y","url":null,"abstract":"<p><strong>Background: </strong>Plant-associated microorganisms can be found in various plant niches and collectively comprise the plant microbiome. The plant microbiome assemblages have been extensively studied, primarily in model species. However, a deep understanding of the microbiome assembly associated with plant health is still needed. Ginger rhizome rot has been variously attributed to multiple individual causal agents. Due to its global relevance, we used ginger and rhizome rot as a model to elucidate the metabolome-driven microbiome assembly associated with plant health.</p><p><strong>Results: </strong>Our study thoroughly examined the biodiversity of soilborne and endophytic microbiota in healthy and diseased ginger plants, highlighting the impact of bacterial and fungal microbes on plant health and the specific metabolites contributing to a healthy microbial community. Metabarcoding allowed for an in-depth analysis of the associated microbial community. Dominant genera represented each microbial taxon at the niche level. According to linear discriminant analysis effect size, bacterial species belonging to Sphingomonas, Quadrisphaera, Methylobacterium-Methylorubrum, Bacillus, as well as the fungal genera Pseudaleuria, Lophotrichus, Pseudogymnoascus, Gymnoascus, Mortierella, and Eleutherascus were associated with plant health. Bacterial dysbiosis related to rhizome rot was due to the relative enrichment of Pectobacterium, Alcaligenes, Klebsiella, and Enterobacter. Similarly, an imbalance in the fungal community was caused by the enrichment of Gibellulopsis, Pyxidiophorales, and Plectosphaerella. Untargeted metabolomics analysis revealed several metabolites that drive microbiome assembly closely related to plant health in diverse microbial niches. At the same time, 6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-2,3,4,5-tetrol was present at the level of the entire healthy ginger plant. Lipids and lipid-like molecules were the most significant proportion of highly abundant metabolites associated with ginger plant health versus rhizome rot disease.</p><p><strong>Conclusions: </strong>Our research significantly improves our understanding of metabolome-driven microbiome structure to address crop protection impacts. The microbiome assembly rather than a particular microbe's occurrence drove ginger plant health. Most microbial species and metabolites have yet to be previously identified in ginger plants. The indigenous microbial communities and metabolites described can support future strategies to induce plant disease resistance. They provide a foundation for further exploring pathogens, biocontrol agents, and plant growth promoters associated with economically important crops. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":13.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380783/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicrobiomePub Date : 2024-09-06DOI: 10.1186/s40168-024-01879-w
Mustafa Attrah, Milo R Schärer, Mauro Esposito, Giulia Gionchetta, Helmut Bürgmann, Piet N L Lens, Kathrin Fenner, Jack van de Vossenberg, Serina L Robinson
{"title":"Disentangling abiotic and biotic effects of treated wastewater on stream biofilm resistomes enables the discovery of a new planctomycete beta-lactamase.","authors":"Mustafa Attrah, Milo R Schärer, Mauro Esposito, Giulia Gionchetta, Helmut Bürgmann, Piet N L Lens, Kathrin Fenner, Jack van de Vossenberg, Serina L Robinson","doi":"10.1186/s40168-024-01879-w","DOIUrl":"10.1186/s40168-024-01879-w","url":null,"abstract":"<p><strong>Background: </strong>Environmental reservoirs of antibiotic resistance pose a threat to human and animal health. Aquatic biofilms impacted by wastewater effluent (WW) are known environmental reservoirs for antibiotic resistance; however, the relative importance of biotic factors and abiotic factors from WW on the abundance of antibiotic resistance genes (ARGs) within aquatic biofilms remains unclear. Additionally, experimental evidence is limited within complex aquatic microbial communities as to whether genes bearing low sequence similarity to validated reference ARGs are functional as ARGs.</p><p><strong>Results: </strong>To disentangle the effects of abiotic and biotic factors on ARG abundances, natural biofilms were previously grown in flume systems with different proportions of stream water and either ultrafiltered or non-ultrafiltered WW. In this study, we conducted deep shotgun metagenomic sequencing of 75 biofilm, stream, and WW samples from these flume systems and compared the taxonomic and functional microbiome and resistome composition. Statistical analysis revealed an alignment of the resistome and microbiome composition and a significant association with experimental treatment. Several ARG classes exhibited an increase in normalized metagenomic abundances in biofilms grown with increasing percentages of non-ultrafiltered WW. In contrast, sulfonamide and extended-spectrum beta-lactamase ARGs showed greater abundances in biofilms grown in ultrafiltered WW compared to non-ultrafiltered WW. Overall, our results pointed toward the dominance of biotic factors over abiotic factors in determining ARG abundances in WW-impacted stream biofilms and suggested gene family-specific mechanisms for ARGs that exhibited divergent abundance patterns. To investigate one of these specific ARG families experimentally, we biochemically characterized a new beta-lactamase from the Planctomycetota (Phycisphaeraceae). This beta-lactamase displayed activity in the cleavage of cephalosporin analog despite sharing a low sequence identity with known ARGs.</p><p><strong>Conclusions: </strong>This discovery of a functional planctomycete beta-lactamase ARG is noteworthy, not only because it was the first beta-lactamase to be biochemically characterized from this phylum, but also because it was not detected by standard homology-based ARG tools. In summary, this study conducted a metagenomic analysis of the relative importance of biotic and abiotic factors in the context of WW discharge and their impact on both known and new ARGs in aquatic biofilms. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":13.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated analysis of facial microbiome and skin physio-optical properties unveils cutotype-dependent aging effects.","authors":"Chuqing Sun, Guoru Hu, Liwen Yi, Wei Ge, Qingyu Yang, Xiangliang Yang, Yifan He, Zhi Liu, Wei-Hua Chen","doi":"10.1186/s40168-024-01891-0","DOIUrl":"10.1186/s40168-024-01891-0","url":null,"abstract":"<p><strong>Background: </strong>Our facial skin hosts millions of microorganisms, primarily bacteria, crucial for skin health by maintaining the physical barrier, modulating immune response, and metabolizing bioactive materials. Aging significantly influences the composition and function of the facial microbiome, impacting skin immunity, hydration, and inflammation, highlighting potential avenues for interventions targeting aging-related facial microbes amidst changes in skin physiological properties.</p><p><strong>Results: </strong>We conducted a multi-center and deep sequencing survey to investigate the intricate interplay of aging, skin physio-optical conditions, and facial microbiome. Leveraging a newly-generated dataset of 2737 species-level metagenome-assembled genomes (MAGs), our integrative analysis highlighted aging as the primary driver, influencing both facial microbiome composition and key skin characteristics, including moisture, sebum production, gloss, pH, elasticity, and sensitivity. Further mediation analysis revealed that skin characteristics significantly impacted the microbiome, mostly as a mediator of aging. Utilizing this dataset, we uncovered two consistent cutotypes across sampling cities and identified aging-related microbial MAGs. Additionally, a Facial Aging Index (FAI) was formulated based on the microbiome, uncovering the cutotype-dependent effects of unhealthy lifestyles on skin aging. Finally, we distinguished aging related microbial pathways influenced by lifestyles with cutotype-dependent effect.</p><p><strong>Conclusions: </strong>Together, our findings emphasize aging's central role in facial microbiome dynamics, and support personalized skin microbiome interventions by targeting lifestyle, skin properties, and aging-related microbial factors. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":13.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376020/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicrobiomePub Date : 2024-09-04DOI: 10.1186/s40168-024-01874-1
Paula Huber, Daniele De Angelis, Hugo Sarmento, Sebastian Metz, Caterina R Giner, Colomban De Vargas, Luigi Maiorano, Ramon Massana, Ramiro Logares
{"title":"Global distribution, diversity, and ecological niche of Picozoa, a widespread and enigmatic marine protist lineage.","authors":"Paula Huber, Daniele De Angelis, Hugo Sarmento, Sebastian Metz, Caterina R Giner, Colomban De Vargas, Luigi Maiorano, Ramon Massana, Ramiro Logares","doi":"10.1186/s40168-024-01874-1","DOIUrl":"10.1186/s40168-024-01874-1","url":null,"abstract":"<p><strong>Background: </strong>The backbone of the eukaryotic tree of life contains taxa only found in molecular surveys, of which we still have a limited understanding. Such is the case of Picozoa, an enigmatic lineage of heterotrophic picoeukaryotes within the supergroup Archaeplastida, which has emerged as a significant component of marine microbial planktonic communities. To enhance our understanding of the diversity, distribution, and ecology of Picozoa, we conduct a comprehensive assessment at different levels, from assemblages to taxa, employing phylogenetic analysis, species distribution modeling, and ecological niche characterization.</p><p><strong>Results: </strong>Picozoa was among the ten most abundant eukaryotic groups, found almost exclusively in marine environments. The phylum was represented by 179 Picozoa's OTU (pOTUs) placed in five phylogenetic clades. Picozoa community structure had a clear latitudinal pattern, with polar assemblages tending to cluster separately from non-polar ones. Based on the abundance and occupancy pattern, the pOTUs were classified into four categories: Low-abundant, Widespread, Polar, and Non-polar. We calculated the ecological niche of each of these categories. Notably, pOTUs sharing similar ecological niches were not closely related species, indicating a phylogenetic overdispersion in Picozoa communities. This could be attributed to competitive exclusion and the strong influence of the seasonal amplitude of variations in environmental factors, such as temperature, shaping physiological and ecological traits.</p><p><strong>Conclusions: </strong>Overall, this work advances our understanding of uncharted protists' evolutionary dynamics and ecological strategies. Our results highlight the importance of understanding the species-level ecology of marine heteroflagellates like Picozoa. The observed phylogenetic overdispersion challenges the concept of phylogenetic niche conservatism in protist communities, suggesting that closely related species do not necessarily share similar ecological niches. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":13.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicrobiomePub Date : 2024-08-30DOI: 10.1186/s40168-024-01883-0
Xingxing Ping, Raja Asad Ali Khan, Shumin Chen, Yang Jiao, Xia Zhuang, Lijun Jiang, Liqun Song, Yuhong Yang, Jianlong Zhao, Yan Li, Zhenchuan Mao, Bingyan Xie, Jian Ling
{"title":"Deciphering the role of rhizosphere microbiota in modulating disease resistance in cabbage varieties.","authors":"Xingxing Ping, Raja Asad Ali Khan, Shumin Chen, Yang Jiao, Xia Zhuang, Lijun Jiang, Liqun Song, Yuhong Yang, Jianlong Zhao, Yan Li, Zhenchuan Mao, Bingyan Xie, Jian Ling","doi":"10.1186/s40168-024-01883-0","DOIUrl":"10.1186/s40168-024-01883-0","url":null,"abstract":"<p><strong>Background: </strong>Cabbage Fusarium wilt (CFW) is a devastating disease caused by the soil-borne fungus Fusarium oxysporum f. sp. conglutinans (Foc). One of the optimal measures for managing CFW is the employment of tolerant/resistant cabbage varieties. However, the interplay between plant genotypes and the pathogen Foc in shaping the rhizosphere microbial community, and the consequent influence of these microbial assemblages on biological resistance, remains inadequately understood.</p><p><strong>Results: </strong>Based on amplicon metabarcoding data, we observed distinct differences in the fungal alpha diversity index (Shannon index) and beta diversity index (unweighted Bray-Curtis dissimilarity) within the rhizosphere of the YR (resistant to Foc) and ZG (susceptible to Foc) cabbage varieties, irrespective of Foc inoculation. Notably, the Shannon diversity shifts in the resistant YR variety were more pronounced following Foc inoculation. Disease-resistant plant variety demonstrate a higher propensity for harboring beneficial microorganisms, such as Pseudomonas, and exhibit superior capabilities in evading harmful microorganisms, in contrast to their disease-susceptible counterparts. Furthermore, the network analysis was performed on rhizosphere-associated microorganisms, including both bacteria and fungi. The networks of association recovered from YR exhibited greater complexity, robustness, and density, regardless of Foc inoculation. Following Foc infection in the YR rhizosphere, there was a notable increase in the dominant bacterium NA13, which is also a hub taxon in the microbial network. Reintroducing NA13 into the soil significantly improved disease resistance in the susceptible ZG variety, by directly inhibiting Foc and triggering defense mechanisms in the roots.</p><p><strong>Conclusions: </strong>The rhizosphere microbial communities of these two cabbage varieties are markedly distinct, with the introduction of the pathogen eliciting significant alterations in their microbial networks which is correlated with susceptibility or resistance to soil-borne pathogens. Furthermore, we identified a rhizobacteria species that significantly boosts disease resistance in susceptible cabbages. Our results indicated that the induction of resistance genes leading to varied responses in microbial communities to pathogens may partly explain the differing susceptibilities of the cabbage varieties tested to CFW. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":13.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}