Microbiome最新文献

筛选
英文 中文
Metaproteomics reveals diet-induced changes in gut microbiome function according to Crohn's disease location. 元蛋白质组学揭示了根据克罗恩病发病部位饮食诱导的肠道微生物组功能变化。
IF 13.8 1区 生物学
Microbiome Pub Date : 2024-10-23 DOI: 10.1186/s40168-024-01927-5
Stefano Levi Mortera, Valeria Marzano, Federica Rapisarda, Chiara Marangelo, Ilaria Pirona, Pamela Vernocchi, Marta Di Michele, Federica Del Chierico, Maria A Quintero, Irina Fernandez, Hajar Hazime, Rose M Killian, Norma Solis, Mailenys Ortega, Oriana M Damas, Siobhan Proksell, David H Kerman, Amar R Deshpande, Luis Garces, Franco Scaldaferri, Antonio Gasbarrini, Maria T Abreu, Lorenza Putignani
{"title":"Metaproteomics reveals diet-induced changes in gut microbiome function according to Crohn's disease location.","authors":"Stefano Levi Mortera, Valeria Marzano, Federica Rapisarda, Chiara Marangelo, Ilaria Pirona, Pamela Vernocchi, Marta Di Michele, Federica Del Chierico, Maria A Quintero, Irina Fernandez, Hajar Hazime, Rose M Killian, Norma Solis, Mailenys Ortega, Oriana M Damas, Siobhan Proksell, David H Kerman, Amar R Deshpande, Luis Garces, Franco Scaldaferri, Antonio Gasbarrini, Maria T Abreu, Lorenza Putignani","doi":"10.1186/s40168-024-01927-5","DOIUrl":"10.1186/s40168-024-01927-5","url":null,"abstract":"<p><strong>Background: </strong>Crohn's disease (CD) is characterized by chronic intestinal inflammation. Diet is a key modifiable factor influencing the gut microbiome (GM) and a risk factor for CD. However, the impact of diet modulation on GM function in CD patients is understudied. Herein, we evaluated the effect of a high-fiber, low-fat diet (the Mi-IBD diet) on GM function in CD patients. All participants were instructed to follow the Mi-IBD diet for 8 weeks. One group of CD patients received one-time diet counseling only (Gr1); catered food was supplied for the other three groups, including CD patients (Gr2) and dyads of CD patients and healthy household controls (HHCs) residing within the same household (Gr3-HHC dyads). Stool samples were collected at baseline, week 8, and week 36, and analyzed by liquid chromatography-tandem mass spectrometry.</p><p><strong>Results: </strong>At baseline, the metaproteomic profiles of CD patients and HHCs differed. The Mi-IBD diet significantly increased carbohydrate and iron transport and metabolism. The predicted microbial composition underlying the metaproteomic changes differed between patients with ileal only disease (ICD) or colonic involvement: ICD was characterized by decreased Faecalibacterium abundance. Even on the Mi-IBD diet, the CD patient metaproteome displayed significant underrepresentation of carbohydrate and purine/pyrimidine synthesis pathways compared to that of HHCs. Human immune-related proteins were upregulated in CD patients compared to HHCs.</p><p><strong>Conclusions: </strong>The Mi-IBD diet changed the microbial function of CD patients and enhanced carbohydrate metabolism. Our metaproteomic results highlight functional differences in the microbiome according to disease location. Notably, our dietary intervention yielded the most benefit for CD patients with colonic involvement compared to ileal-only disease. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"217"},"PeriodicalIF":13.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fecal microbiota transplantation alters the proteomic landscape of inflammation in HIV: identifying bacterial drivers. 粪便微生物群移植改变了艾滋病病毒炎症的蛋白质组景观:确定细菌驱动因素。
IF 13.8 1区 生物学
Microbiome Pub Date : 2024-10-22 DOI: 10.1186/s40168-024-01919-5
Claudio Díaz-García, Elena Moreno, Alba Talavera-Rodríguez, Lucía Martín-Fernández, Sara González-Bodí, Laura Martín-Pedraza, José A Pérez-Molina, Fernando Dronda, María José Gosalbes, Laura Luna, María Jesús Vivancos, Jaime Huerta-Cepas, Santiago Moreno, Sergio Serrano-Villar
{"title":"Fecal microbiota transplantation alters the proteomic landscape of inflammation in HIV: identifying bacterial drivers.","authors":"Claudio Díaz-García, Elena Moreno, Alba Talavera-Rodríguez, Lucía Martín-Fernández, Sara González-Bodí, Laura Martín-Pedraza, José A Pérez-Molina, Fernando Dronda, María José Gosalbes, Laura Luna, María Jesús Vivancos, Jaime Huerta-Cepas, Santiago Moreno, Sergio Serrano-Villar","doi":"10.1186/s40168-024-01919-5","DOIUrl":"https://doi.org/10.1186/s40168-024-01919-5","url":null,"abstract":"<p><strong>Background: </strong>Despite effective antiretroviral therapy, people with HIV (PWH) experience persistent systemic inflammation and increased morbidity and mortality. Modulating the gut microbiome through fecal microbiota transplantation (FMT) represents a novel therapeutic strategy. We aimed to evaluate proteomic changes in inflammatory pathways following repeated, low-dose FMT versus placebo.</p><p><strong>Methods: </strong>This double-masked, placebo-controlled pilot study assessed the proteomic impacts of weekly FMT versus placebo treatment over 8 weeks on systemic inflammation in 29 PWH receiving stable antiretroviral therapy (ART). Three stool donors with high Faecalibacterium and butyrate profiles were selected, and their individual stools were used for FMT capsule preparation. Proteomic changes in 345 inflammatory proteins in plasma were quantified using the proximity extension assay, with samples collected at baseline and at weeks 1, 8, and 24. Concurrently, we characterized shifts in the gut microbiota composition and annotated functions through shotgun metagenomics. We fitted generalized additive models to evaluate the dynamics of protein expression. We selected the most relevant proteins to explore their correlations with microbiome composition and functionality over time using linear mixed models.</p><p><strong>Results: </strong>FMT significantly reduced the plasma levels of 45 inflammatory proteins, including established mortality predictors such as IL6 and TNF-α. We found notable reductions persisting up to 16 weeks after the final FMT procedure, including in the expression of proteins such as CCL20 and CD22. We identified changes in 46 proteins, including decreases in FT3LG, IL6, IL10RB, IL12B, and IL17A, which correlated with multiple bacterial species. We found that specific bacterial species within the Ruminococcaceae, Succinivibrionaceae, Prevotellaceae families, and the Clostridium genus, in addition to their associated genes and functions, were significantly correlated with changes in inflammatory markers.</p><p><strong>Conclusions: </strong>Targeting the gut microbiome through FMT effectively decreased inflammatory proteins in PWH, with sustained effects. These findings suggest the potential of the microbiome as a therapeutic target to mitigate inflammation-related complications in this population, encouraging further research and development of microbiome-based interventions. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"214"},"PeriodicalIF":13.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anaerostipes caccae CML199 enhances bone development and counteracts aging-induced bone loss through the butyrate-driven gut-bone axis: the chicken model. Anaerostipes caccae CML199通过丁酸驱动的肠道-骨骼轴促进骨骼发育并抵消衰老引起的骨质流失:鸡模型。
IF 13.8 1区 生物学
Microbiome Pub Date : 2024-10-22 DOI: 10.1186/s40168-024-01920-y
Zhengtian Lyu, Gaoxiang Yuan, Yuying Zhang, Fengwenhui Zhang, Yan Liu, Yifan Li, Guang Li, Ying Wang, Ming Zhang, Yongfei Hu, Yuming Guo, Dan Liu
{"title":"Anaerostipes caccae CML199 enhances bone development and counteracts aging-induced bone loss through the butyrate-driven gut-bone axis: the chicken model.","authors":"Zhengtian Lyu, Gaoxiang Yuan, Yuying Zhang, Fengwenhui Zhang, Yan Liu, Yifan Li, Guang Li, Ying Wang, Ming Zhang, Yongfei Hu, Yuming Guo, Dan Liu","doi":"10.1186/s40168-024-01920-y","DOIUrl":"https://doi.org/10.1186/s40168-024-01920-y","url":null,"abstract":"<p><strong>Background: </strong>The gut microbiota is a key regulator of bone metabolism. Investigating the relationship between the gut microbiota and bone remodeling has revealed new avenues for the treatment of bone-related disorders. Despite significant progress in understanding gut microbiota-bone interactions in mammals, research on avian species remains limited. Birds have unique bone anatomy and physiology to support egg-laying. However, whether and how the gut microbiota affects bone physiology in birds is still unknown. In this study, we utilized laying hens as a research model to analyze bone development patterns, elucidate the relationships between bone and the gut microbiota, and mine probiotics with osteomodulatory effects.</p><p><strong>Results: </strong>Aging led to a continuous increase in bone mineral density in the femur of laying hens. The continuous deposition of medullary bone in the bone marrow cavity of aged laying hens led to significant trabecular bone loss and weakened bone metabolism. The cecal microbial composition significantly shifted before and after sexual maturity, with some genera within the class Clostridia potentially linked to postnatal bone development in laying hens. Four bacterial strains associated with bone development, namely Blautia coccoides CML164, Fournierella sp002159185 CML151, Anaerostipes caccae CML199 (ANA), and Romboutsia lituseburensis CML137, were identified and assessed in chicks with low bacterial loads and chicken primary osteoblasts. Among these, ANA demonstrated the most significant promotion of bone formation both in vivo and in vitro, primarily attributed to butyrate in its fermentation products. A long-term feeding experiment of up to 72 weeks confirmed that ANA enhanced bone development during sexual maturity by improving the immune microenvironment of the bone marrow in laying hens. Dietary supplementation of ANA for 50 weeks prevented excessive medullary bone deposition and mitigated aging-induced trabecular bone loss.</p><p><strong>Conclusions: </strong>These findings highlight the beneficial effects of ANA on bone physiology, offering new perspectives for microbial-based interventions for bone-related disorders in both poultry and possibly extending to human health. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"215"},"PeriodicalIF":13.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maternal gastrointestinal microbiome shapes gut microbial function and resistome of newborns in a cow-to-calf model. 在母牛到小牛模型中,母体胃肠道微生物组影响新生儿的肠道微生物功能和抗性组。
IF 13.8 1区 生物学
Microbiome Pub Date : 2024-10-22 DOI: 10.1186/s40168-024-01943-5
Yimin Zhuang, Shuai Liu, Duo Gao, Yiming Xu, Wen Jiang, Guobin Hou, Sumin Li, Xinjie Zhao, Tianyu Chen, Shangru Li, Siyuan Zhang, Yanting Huang, Jingjun Wang, Jianxin Xiao, Mengmeng Li, Wei Wang, Shengli Li, Zhijun Cao
{"title":"Maternal gastrointestinal microbiome shapes gut microbial function and resistome of newborns in a cow-to-calf model.","authors":"Yimin Zhuang, Shuai Liu, Duo Gao, Yiming Xu, Wen Jiang, Guobin Hou, Sumin Li, Xinjie Zhao, Tianyu Chen, Shangru Li, Siyuan Zhang, Yanting Huang, Jingjun Wang, Jianxin Xiao, Mengmeng Li, Wei Wang, Shengli Li, Zhijun Cao","doi":"10.1186/s40168-024-01943-5","DOIUrl":"https://doi.org/10.1186/s40168-024-01943-5","url":null,"abstract":"<p><strong>Background: </strong>The maternal gut microbiome is the direct and important source of early colonization and development of the neonatal gut microbiome. However, differences in unique and shared features between mothers with different physiological phenotypes and their newborns still lack exhaustive investigation. Here, using a cow-to-calf model, a comprehensive investigation was conducted to elucidate the pattern and characterization of microbial transfer from the maternal source to the offspring.</p><p><strong>Results: </strong>The microbiota in the rumen and feces of dairy cows were divided into two clusters via enterotype analysis. The cows from the enterotype distinguished by Prevotella in the rumen had better production performance, whereas no difference was observed in the cows classified by feces enterotype. Furthermore, through a pairwise combination of fecal and ruminal enterotypes, we screened a group of dairy cows with excellent phenotypes. The gastrointestinal microbiomes of cows with different phenotypes and their offspring differed significantly. The rumen was a more important microbial source for meconium than feces. Transmission of beneficial bacteria from mother to offspring was observed. Additionally, the meconium inherits advantageous metabolic functions of the rumen. The resistome features of the rumen, feces, and meconium were consistent, and resistome abundance from cows to calves showed an expanding trend. The interaction between antibiotic-resistance genes and mobile genetic elements from the rumen to meconium was the most remarkable. The diversity of core metabolites from cows to calves was stable and not affected by differences in phenotypes. However, the abundance of specific metabolites varied greatly.</p><p><strong>Conclusions: </strong>Our study demonstrates the microbial taxa, metabolic function, and resistome characteristics of maternal and neonatal microbiomes, and reveals the potential vertical transmission of the microbiome from a cow-to-calf model. These findings provide new insights into the transgenerational transmission pattern of the microbiome. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"216"},"PeriodicalIF":13.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Staphylococcus aureus-antagonizing human nasal commensal Staphylococcus lugdunensis depends on siderophore piracy. 可拮抗金黄色葡萄球菌的人类鼻腔共生葡萄球菌卢格敦金黄色葡萄球菌依赖于嗜苷酸盐海盗。
IF 13.8 1区 生物学
Microbiome Pub Date : 2024-10-22 DOI: 10.1186/s40168-024-01913-x
Ralf Rosenstein, Benjamin O Torres Salazar, Claudia Sauer, Simon Heilbronner, Bernhard Krismer, Andreas Peschel
{"title":"The Staphylococcus aureus-antagonizing human nasal commensal Staphylococcus lugdunensis depends on siderophore piracy.","authors":"Ralf Rosenstein, Benjamin O Torres Salazar, Claudia Sauer, Simon Heilbronner, Bernhard Krismer, Andreas Peschel","doi":"10.1186/s40168-024-01913-x","DOIUrl":"https://doi.org/10.1186/s40168-024-01913-x","url":null,"abstract":"<p><strong>Background: </strong>Bacterial pathogens such as Staphylococcus aureus colonize body surfaces of part of the human population, which represents a critical risk factor for skin disorders and invasive infections. However, such pathogens do not belong to the human core microbiomes. Beneficial commensal bacteria can often prevent the invasion and persistence of such pathogens by using molecular strategies that are only superficially understood. We recently reported that the commensal bacterium Staphylococcus lugdunensis produces the novel antibiotic lugdunin, which eradicates S. aureus from the nasal microbiomes of hospitalized patients. However, it has remained unclear if S. lugdunensis may affect S. aureus carriage in the general population and which external factors might promote S. lugdunensis carriage to enhance its S. aureus-eliminating capacity.</p><p><strong>Results: </strong>We could cultivate S. lugdunensis from the noses of 6.3% of healthy human volunteers. In addition, S. lugdunensis DNA could be identified in metagenomes of many culture-negative nasal samples indicating that cultivation success depends on a specific bacterial threshold density. Healthy S. lugdunensis carriers had a 5.2-fold lower propensity to be colonized by S. aureus indicating that lugdunin can eliminate S. aureus also in healthy humans. S. lugdunensis-positive microbiomes were dominated by either Staphylococcus epidermidis, Corynebacterium species, or Dolosigranulum pigrum. These and further bacterial commensals, whose abundance was positively associated with S. lugdunensis, promoted S. lugdunensis growth in co-culture. Such mutualistic interactions depended on the production of iron-scavenging siderophores by supportive commensals and on the capacity of S. lugdunensis to import siderophores. Video Abstract CONCLUSIONS: These findings underscore the importance of microbiome homeostasis for eliminating pathogen colonization. Elucidating mechanisms that drive microbiome interactions will become crucial for microbiome-precision editing approaches.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"213"},"PeriodicalIF":13.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volatile-mediated interspecific plant interaction promotes root colonization by beneficial bacteria via induced shifts in root exudation. 挥发性物质介导的植物种间相互作用通过诱导根部渗出的变化,促进有益细菌在根部定殖。
IF 13.8 1区 生物学
Microbiome Pub Date : 2024-10-21 DOI: 10.1186/s40168-024-01914-w
Xingang Zhou, Jingyu Zhang, Jibo Shi, Muhammad Khashi U Rahman, Hongwei Liu, Zhong Wei, Fengzhi Wu, Francisco Dini-Andreote
{"title":"Volatile-mediated interspecific plant interaction promotes root colonization by beneficial bacteria via induced shifts in root exudation.","authors":"Xingang Zhou, Jingyu Zhang, Jibo Shi, Muhammad Khashi U Rahman, Hongwei Liu, Zhong Wei, Fengzhi Wu, Francisco Dini-Andreote","doi":"10.1186/s40168-024-01914-w","DOIUrl":"10.1186/s40168-024-01914-w","url":null,"abstract":"<p><strong>Background: </strong>Volatile organic compounds (VOCs) released by plants can act as signaling molecules mediating ecological interactions. Therefore, the study of VOCs mediated intra- and interspecific interactions with downstream plant physiological responses is critical to advance our understanding of mechanisms underlying information exchange in plants. Here, we investigated how plant-emitted VOCs affect the performance of an interspecific neighboring plant via induced shifts in root exudate chemistry with implications for root-associated microbiota recruitment.</p><p><strong>Results: </strong>First, we showed that VOCs emitted by potato-onion plants stimulate the growth of adjacent tomato plants. Then, we demonstrated that this positive effect on tomato biomass was attributed to shifts in the tomato rhizosphere microbiota. Specifically, we found potato-onion VOCs to indirectly affect the recruitment of specific bacteria (e.g., Pseudomonas and Bacillus spp.) in the tomato rhizosphere. Second, we identified and validated the compound dipropyl disulfide as the active molecule within the blend of potato-onion VOCs mediating this interspecific plant communication. Third, we showed that the effect on the tomato rhizosphere microbiota occurs via induced changes in root exudates of tomato plants caused by exposure to dipropyl disulfide. Last, Pseudomonas and Bacillus spp. bacteria enriched in the tomato rhizosphere were shown to have plant growth-promoting activities.</p><p><strong>Conclusions: </strong>Potato-onion VOCs-specifically dipropyl disulfide-can induce shifts in the root exudate of adjacent tomato plants, which results in the recruitment of plant-beneficial bacteria in the rhizosphere. Taken together, this study elucidated a new mechanism of interspecific plant interaction mediated by VOCs resulting in alterations in the rhizosphere microbiota with beneficial outcomes for plant performance. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"207"},"PeriodicalIF":13.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host-microbe interaction-mediated resistance to DSS-induced inflammatory enteritis in sheep. 宿主-微生物相互作用介导的绵羊对 DSS 诱导的炎症性肠炎的抵抗力。
IF 13.8 1区 生物学
Microbiome Pub Date : 2024-10-21 DOI: 10.1186/s40168-024-01932-8
Shuo Yan, Ruilin Du, Wenna Yao, Huimin Zhang, Yue Xue, Teligun, Yongfa Li, Hanggai Bao, Yulong Zhao, Shuo Cao, Guifang Cao, Xihe Li, Siqin Bao, Yongli Song
{"title":"Host-microbe interaction-mediated resistance to DSS-induced inflammatory enteritis in sheep.","authors":"Shuo Yan, Ruilin Du, Wenna Yao, Huimin Zhang, Yue Xue, Teligun, Yongfa Li, Hanggai Bao, Yulong Zhao, Shuo Cao, Guifang Cao, Xihe Li, Siqin Bao, Yongli Song","doi":"10.1186/s40168-024-01932-8","DOIUrl":"10.1186/s40168-024-01932-8","url":null,"abstract":"<p><strong>Background: </strong>The disease resistance phenotype is closely related to immunomodulatory function and immune tolerance and has far-reaching implications in animal husbandry and human health. Microbes play an important role in the initiation, prevention, and treatment of diseases, but the mechanisms of host-microbiota interactions in disease-resistant phenotypes are poorly understood. In this study, we hope to uncover and explain the role of microbes in intestinal diseases and their mechanisms of action to identify new potential treatments.</p><p><strong>Methods: </strong>First, we established the colitis model of DSS in two breeds of sheep and then collected the samples for multi-omics testing including metagenes, metabolome, and transcriptome. Next, we made the fecal bacteria liquid from the four groups of sheep feces collected from H-CON, H-DSS, E-CON, and E-DSS to transplant the fecal bacteria into mice. H-CON feces were transplanted into mice named HH group and H-DSS feces were transplanted into mice named HD group and Roseburia bacteria treatment named HDR groups. E-CON feces were transplanted into mice named EH group and E-DSS feces were transplanted into mice in the ED group and Roseburia bacteria treatment named EDR groups. After successful modeling, samples were taken for multi-omics testing. Finally, colitis mice in HD group and ED group were administrated with Roseburia bacteria, and the treatment effect was evaluated by H&E, PAS, immunohistochemistry, and other experimental methods.</p><p><strong>Results: </strong>The difference in disease resistance of sheep to DSS-induced colitis disease is mainly due to the increase in the abundance of Roseburia bacteria and the increase of bile acid secretion in the intestinal tract of Hu sheep in addition to the accumulation of potentially harmful bacteria in the intestine when the disease occurs, which makes the disease resistance of Hu sheep stronger under the same disease conditions. However, the enrichment of harmful microorganisms in East Friesian sheep activated the TNFα signalling pathway, which aggravated the intestinal injury, and then the treatment of FMT mice by culturing Roseburia bacteria found that Roseburia bacteria had a good curative effect on colitis.</p><p><strong>Conclusion: </strong>Our study showed that in H-DSS-treated sheep, the intestinal barrier is stabilized with an increase in the abundance of beneficial microorganisms. Our data also suggest that Roseburia bacteria have a protective effect on the intestinal barrier of Hu sheep. Accumulating evidence suggests that host-microbiota interactions are associated with IBD disease progression. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"208"},"PeriodicalIF":13.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492479/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Xylanase enhances gut microbiota-derived butyrate to exert immune-protective effects in a histone deacetylase-dependent manner. 木聚糖酶以组蛋白去乙酰化酶依赖的方式增强肠道微生物群衍生的丁酸盐,从而发挥免疫保护作用。
IF 13.8 1区 生物学
Microbiome Pub Date : 2024-10-21 DOI: 10.1186/s40168-024-01934-6
Tong Wang, Nannan Zhou, Feifei Ding, Zhenzhen Hao, Jorge Galindo-Villegas, Zhenyu Du, Xiaoyun Su, Meiling Zhang
{"title":"Xylanase enhances gut microbiota-derived butyrate to exert immune-protective effects in a histone deacetylase-dependent manner.","authors":"Tong Wang, Nannan Zhou, Feifei Ding, Zhenzhen Hao, Jorge Galindo-Villegas, Zhenyu Du, Xiaoyun Su, Meiling Zhang","doi":"10.1186/s40168-024-01934-6","DOIUrl":"10.1186/s40168-024-01934-6","url":null,"abstract":"<p><strong>Background: </strong>Commensal bacteria in the intestine release enzymes to degrade and ferment dietary components, producing beneficial metabolites. However, the regulatory effects of microbial-derived enzymes on the intestinal microbiota composition and the influence on host health remain elusive. Xylanase can degrade xylan into oligosaccharides, showing wide application in feed industry.</p><p><strong>Results: </strong>To validate the immune-protective effects of xylanase, Nile tilapia was used as the model and fed with xylanase. The results showed that dietary xylanase improved the survival rate of Nile tilapia when they were challenged with Aeromonas hydrophila. The transcriptome analysis showed significant enrichment of genes related to interleukin-17d (il-17d) signaling pathway in the xylanase treatment group. High-throughput sequencing revealed that dietary xylanase altered the composition of the intestinal microbiota and directly promoted the proliferation of Allobaculum stercoricanis which could produce butyrate in vitro. Consequently, dietary xylanase supplementation increased the butyrate level in fish gut. Further experiment verified that butyrate supplementation enhanced the expression of il-17d and regenerating islet-derived 3 gamma (reg3g) in the gut. The knockdown experiment of il-17d confirmed that il-17d is necessary for butyrate to protect Nile tilapia from pathogen resistance. Flow cytometry analysis indicated that butyrate increased the abundance of IL-17D<sup>+</sup> intestinal epithelial cells in fish. Mechanistically, butyrate functions as an HDAC3 inhibitor, enhancing il-17d expression and playing a crucial role in pathogen resistance.</p><p><strong>Conclusion: </strong>Dietary xylanase significantly altered the composition of intestinal microbiota and increased the content of butyrate in the intestine. Butyrate activated the transcription of il-17d in intestinal epithelial cells by inhibiting histone deacetylase 3, thereby protecting the Nile tilapia from pathogen infection. This study elucidated how microbial-derived xylanase regulates host immune function, providing a theoretical basis for the development and application of functional enzymes. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"212"},"PeriodicalIF":13.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Balancing the scales: assessing the impact of irrigation and pathogen burden on potato blackleg disease and soil microbial communities. 平衡天平:评估灌溉和病原体负担对马铃薯黑胫病和土壤微生物群落的影响。
IF 13.8 1区 生物学
Microbiome Pub Date : 2024-10-21 DOI: 10.1186/s40168-024-01918-6
Ciara Keating, Elizabeth Kilbride, Mark A Stalham, Charlotte Nellist, Joel Milner, Sonia Humphris, Ian Toth, Barbara K Mable, Umer Zeeshan Ijaz
{"title":"Balancing the scales: assessing the impact of irrigation and pathogen burden on potato blackleg disease and soil microbial communities.","authors":"Ciara Keating, Elizabeth Kilbride, Mark A Stalham, Charlotte Nellist, Joel Milner, Sonia Humphris, Ian Toth, Barbara K Mable, Umer Zeeshan Ijaz","doi":"10.1186/s40168-024-01918-6","DOIUrl":"10.1186/s40168-024-01918-6","url":null,"abstract":"<p><strong>Background: </strong>Understanding the interaction between environmental conditions, crop yields, and soil health is crucial for sustainable agriculture in a changing climate. Management practices to limit disease are a balancing act. For example, in potato production, dry conditions favour common scab (Streptomyces spp.) and wet conditions favour blackleg disease (Pectobacterium spp.). The exact mechanisms involved and how these link to changes in the soil microbiome are unclear. Our objectives were to test how irrigation management and bacterial pathogen load in potato seed stocks impact: (i) crop yields; (ii) disease development (blackleg or common scab); and (iii) soil microbial community dynamics.</p><p><strong>Methods: </strong>We used stocks of seed potatoes with varying natural levels of Pectobacterium (Jelly [high load], Jelly [low load] and Estima [Zero - no Pectobacterium]). Stocks were grown under four irrigation regimes that differed in the timing and level of watering. The soil microbial communities were profiled using amplicon sequencing at 50% plant emergence and at harvest. Generalised linear latent variable models and an annotation-free mathematical framework approach (ensemble quotient analysis) were then used to show the interacting microbes with irrigation regime and Pectobacterium pathogen levels.</p><p><strong>Results: </strong>Irrigation increased blackleg symptoms in the plots planted with stocks with low and high levels of Pectobacterium (22-34%) but not in the zero stock (2-6%). However, withholding irrigation increased common scab symptoms (2-5%) and reduced crop yields. Irrigation did not impact the composition of the soil microbiome, but planting stock with a high Pectobacterium burden resulted in an increased abundance of Planctomycetota, Anaerolinea and Acidobacteria species within the microbiome. Ensemble quotient analysis highlighted the Anaerolinea taxa were highly associated with high levels of Pectobacterium in the seed stock and blackleg symptoms in the field.</p><p><strong>Conclusions: </strong>We conclude that planting seed stocks with a high Pectobacterium burden alters the abundance of specific microbial species within the soil microbiome and suggest that managing pathogen load in seed stocks could substantially affect soil communities, affecting crop health and productivity. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"210"},"PeriodicalIF":13.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492761/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next-generation IgA-SEQ allows for high-throughput, anaerobic, and metagenomic assessment of IgA-coated bacteria. 下一代 IgA-SEQ 可对 IgA 包被细菌进行高通量、厌氧和元基因组评估。
IF 13.8 1区 生物学
Microbiome Pub Date : 2024-10-21 DOI: 10.1186/s40168-024-01923-9
Merel van Gogh, Jonas M Louwers, Anna Celli, Sanne Gräve, Marco C Viveen, Sofie Bosch, Nanne K H de Boer, Rik J Verheijden, Karijn P M Suijkerbuijk, Eelco C Brand, Janetta Top, Bas Oldenburg, Marcel R de Zoete
{"title":"Next-generation IgA-SEQ allows for high-throughput, anaerobic, and metagenomic assessment of IgA-coated bacteria.","authors":"Merel van Gogh, Jonas M Louwers, Anna Celli, Sanne Gräve, Marco C Viveen, Sofie Bosch, Nanne K H de Boer, Rik J Verheijden, Karijn P M Suijkerbuijk, Eelco C Brand, Janetta Top, Bas Oldenburg, Marcel R de Zoete","doi":"10.1186/s40168-024-01923-9","DOIUrl":"10.1186/s40168-024-01923-9","url":null,"abstract":"<p><strong>Background: </strong>The intestinal microbiota plays a significant role in maintaining systemic and intestinal homeostasis, but can also influence diseases such as inflammatory bowel disease (IBD) and cancer. Certain bacterial species within the intestinal tract can chronically activate the immune system, leading to low-grade intestinal inflammation. As a result, plasma cells produce high levels of secretory antigen-specific immunoglobulin A (IgA), which coats the immunostimulatory bacteria. This IgA immune response against intestinal bacteria may be associated with the maintenance of homeostasis and health, as well as disease. Unraveling this dichotomy and identifying the immunostimulatory bacteria is crucial for understanding the relationship between the intestinal microbiota and the immune system, and their role in health and disease. IgA-SEQ technology has successfully identified immunostimulatory, IgA-coated bacteria from fecal material. However, the original technology is time-consuming and has limited downstream applications. In this study, we aimed to develop a next-generation, high-throughput, magnet-based sorting approach (ng-IgA-SEQ) to overcome the limitations of the original IgA-SEQ protocol.</p><p><strong>Results: </strong>We show, in various settings of complexity ranging from simple bacterial mixtures to human fecal samples, that our magnetic 96-well plate-based ng-IgA-SEQ protocol is highly efficient at sorting and identifying IgA-coated bacteria in a high-throughput and time efficient manner. Furthermore, we performed a comparative analysis between different IgA-SEQ protocols, highlighting that the original FACS-based IgA-SEQ approach overlooks certain nuances of IgA-coated bacteria, due to the low yield of sorted bacteria. Additionally, magnetic-based ng-IgA-SEQ allows for novel downstream applications. Firstly, as a proof-of-concept, we performed metagenomic shotgun sequencing on 10 human fecal samples to identify IgA-coated bacterial strains and associated pathways and CAZymes. Secondly, we successfully isolated and cultured IgA-coated bacteria by performing the isolation protocol under anaerobic conditions.</p><p><strong>Conclusions: </strong>Our magnetic 96-well plate-based high-throughput next-generation IgA-SEQ technology efficiently identifies a great number of IgA-coated bacteria from fecal samples. This paves the way for analyzing large cohorts as well as novel downstream applications, including shotgun metagenomic sequencing, culturomics, and various functional assays. These downstream applications are essential to unravel the role of immunostimulatory bacteria in health and disease. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"211"},"PeriodicalIF":13.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492651/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信