Mingyuan Liu, Changrun Sui, Wenyu Zhao, Chonghui Fan, Yao Zhang, Zhujun Qiu, Yuqing Wang, Qian Zhang, Ying Liu
{"title":"Dynamic response of gut microbiota mediates the adaptation of Cipangopaludina chinensis to Pomacea canaliculata invasion.","authors":"Mingyuan Liu, Changrun Sui, Wenyu Zhao, Chonghui Fan, Yao Zhang, Zhujun Qiu, Yuqing Wang, Qian Zhang, Ying Liu","doi":"10.1186/s40168-025-02160-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As an invasive species, Pomacea canaliculata exerts significant adverse effects on aquatic ecosystems. It can infect native freshwater snails, such as Cipangopaludina chinensis, by secreting pathogens, leading to increased stress and mortality. Gut microbiota play a crucial role in the survival and adaptation of gastropods, significantly influencing their health and resistance to environmental stressors. By comparing the gut microbiota composition and metabolic profiles between resistant (RE) and sensitive (SE) populations of C. chinensis, this study aims to elucidate the role of the gut microbiota in enhancing the survival of C. chinensis under the invasion pressure from P. canaliculata. And the mechanisms were further explored through gut microbiota transplantation, horizontal and vertical transmission experiments, and field studies. Video Abstract RESULTS: Our findings reveal that RE individuals exhibit greater gut microbiota diversity and a higher abundance of core microbiota, including Psychrobacter, Comamonas, and Pseudomonas, which are correlated with enhanced host survival in the presence of pathogen infections. Analysis of metabolite composition demonstrate that antibiotics and immunological enhancers are the main metabolites, which significantly enhance the host's resistance to pathogen infections. Notably, these core gut microbiota can be transmitted both horizontally and vertically, allowing C. chinensis populations to acquire resistance to the invasion of P. canaliculata. The SE group is enriched in pathogens, such as Mycoplasma. Following the transplantation of RE gut microbiota, SE individuals exhibited improved survival rates and core microbiota abundance. The vital role of core microbiota in maintaining the survival rate of C. chinensis was further confirmed in the field studies.</p><p><strong>Conclusion: </strong>This study highlights the crucial interactions between the gut microbiota and the host's adaptability, offering valuable insights for native species in response of invasive species pressure.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"171"},"PeriodicalIF":12.7000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12291480/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02160-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: As an invasive species, Pomacea canaliculata exerts significant adverse effects on aquatic ecosystems. It can infect native freshwater snails, such as Cipangopaludina chinensis, by secreting pathogens, leading to increased stress and mortality. Gut microbiota play a crucial role in the survival and adaptation of gastropods, significantly influencing their health and resistance to environmental stressors. By comparing the gut microbiota composition and metabolic profiles between resistant (RE) and sensitive (SE) populations of C. chinensis, this study aims to elucidate the role of the gut microbiota in enhancing the survival of C. chinensis under the invasion pressure from P. canaliculata. And the mechanisms were further explored through gut microbiota transplantation, horizontal and vertical transmission experiments, and field studies. Video Abstract RESULTS: Our findings reveal that RE individuals exhibit greater gut microbiota diversity and a higher abundance of core microbiota, including Psychrobacter, Comamonas, and Pseudomonas, which are correlated with enhanced host survival in the presence of pathogen infections. Analysis of metabolite composition demonstrate that antibiotics and immunological enhancers are the main metabolites, which significantly enhance the host's resistance to pathogen infections. Notably, these core gut microbiota can be transmitted both horizontally and vertically, allowing C. chinensis populations to acquire resistance to the invasion of P. canaliculata. The SE group is enriched in pathogens, such as Mycoplasma. Following the transplantation of RE gut microbiota, SE individuals exhibited improved survival rates and core microbiota abundance. The vital role of core microbiota in maintaining the survival rate of C. chinensis was further confirmed in the field studies.
Conclusion: This study highlights the crucial interactions between the gut microbiota and the host's adaptability, offering valuable insights for native species in response of invasive species pressure.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.