{"title":"Nucleotides enriched under heat stress recruit beneficial rhizomicrobes to protect plants from heat and root-rot stresses.","authors":"Haijiao Liu, Yingwei Su, Chen Ye, Denghong Zuo, Luotao Wang, Xinyue Mei, Weiping Deng, Yixiang Liu, Huichuan Huang, Jianjun Hao, Jiangchao Zhao, Dongli Wang, Xin Zhang, Youyong Zhu, Junfeng Liu, Min Yang, Shusheng Zhu","doi":"10.1186/s40168-025-02126-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Plants thrive under biotic and abiotic stresses with the help of rhizomicrobiota. Root exudates play a pivotal role in recruiting beneficial microbes that assist plants in surviving environmental challenges, but the mechanisms of plant-microbiome interactions to resist multiple stresses remain elusive. We investigated how heat stress alters the rhizomicrobiomes of Panax notoginseng and how these heat stress-regulated microbes confer enhanced heat tolerance and disease resistance.</p><p><strong>Results: </strong>We revealed that heat stress at 36 °C caused thermal damage to plants while enhancing heat tolerance and disease resistance for the survival of subsequent plants. Specifically, the beneficial microbes Burkholderia sp. and Saitozyma podzolica were recruited by the heat-stressed P. notoginseng and were confirmed to be responsible for resisting multiple stresses. Heat stress-induced plant roots secrete nucleotides such as purines and pyrimidines to promote the proliferation of these two beneficial microbes rather than root-rot pathogens. The exogenous application of these nucleotides to natural soil also resulted in the enrichment of the same beneficial microbes. Cross-species validation experiments in Capsicum annuum (pepper) and Solanum lycopersicum (tomato) further demonstrated that co-application of nucleotides with beneficial microbes synergistically enhanced heat tolerance.</p><p><strong>Conclusions: </strong>Our findings highlight a plant strategy for thriving under multiple adversities and propose a potential pathway by leveraging nucleotide-mediated recruitment of beneficial microbes for enhancing plant resilience against multiple stresses. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"160"},"PeriodicalIF":13.8000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235776/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02126-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Plants thrive under biotic and abiotic stresses with the help of rhizomicrobiota. Root exudates play a pivotal role in recruiting beneficial microbes that assist plants in surviving environmental challenges, but the mechanisms of plant-microbiome interactions to resist multiple stresses remain elusive. We investigated how heat stress alters the rhizomicrobiomes of Panax notoginseng and how these heat stress-regulated microbes confer enhanced heat tolerance and disease resistance.
Results: We revealed that heat stress at 36 °C caused thermal damage to plants while enhancing heat tolerance and disease resistance for the survival of subsequent plants. Specifically, the beneficial microbes Burkholderia sp. and Saitozyma podzolica were recruited by the heat-stressed P. notoginseng and were confirmed to be responsible for resisting multiple stresses. Heat stress-induced plant roots secrete nucleotides such as purines and pyrimidines to promote the proliferation of these two beneficial microbes rather than root-rot pathogens. The exogenous application of these nucleotides to natural soil also resulted in the enrichment of the same beneficial microbes. Cross-species validation experiments in Capsicum annuum (pepper) and Solanum lycopersicum (tomato) further demonstrated that co-application of nucleotides with beneficial microbes synergistically enhanced heat tolerance.
Conclusions: Our findings highlight a plant strategy for thriving under multiple adversities and propose a potential pathway by leveraging nucleotide-mediated recruitment of beneficial microbes for enhancing plant resilience against multiple stresses. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.