{"title":"Cetobacterium somerae-derived argininosuccinic acid promotes intestinal and liver ureagenesis to alleviate ammonia intoxication.","authors":"Shidong Wang, Xue Li, Muzi Zhang, Ming Li","doi":"10.1186/s40168-025-02152-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ammonia generated from amino acid metabolism is a cytotoxin that can adversely affect cell function and overall health and potentially lead to cellular toxicity and death due to its accumulation. Previous studies have shown that acute ammonia intoxication (AI) can increase the intestinal C. somerae abundance, hinting at a possible involvement of C. somerae in the host's reaction to AI. Nonetheless, the precise mechanism through which C. somerae mitigates the effects of AI is uncertain.</p><p><strong>Results: </strong>This research elucidated the metabolic mechanism of transplanting Cetobacterium somerae ceto (CSC) to assist the host in managing AI. Our results suggest that (I) AI resulted in impaired ureagenesis pathway. This was manifested by elevated levels of ammonia in the blood, liver, and intestines, along with decreased urea levels. (II) Supplementing orally with live CSC facilitated its colonization in the intestines, mitigating AI by reversing depletion of intestinal argininosuccinic acid (ARA) and promoting ureagenesis. (III) CSC synthesized ARA from aspartate and asparagine through the asnA-ansA/B-argG gene cluster. Additionally, CSC assimilated fumaric acid and malic acid from the environment, dampening the degradation of ARA by CSC's fumA-fumB-argH gene cluster. (IV) Live CSC provided ARA support for ureagenesis in the intestine and liver, reducing endogenous ammonia levels of pseudo-sterile yellow catfish. (V) Supplementation of ARA decreased systemic ammonia levels by promoting ureagenesis. Inhibiting the expression of argininosuccinate lyase in the liver through RNA interference can impede arginine synthesis, thereby eliminating the ammonia-lowering effect of ARA.</p><p><strong>Conclusion: </strong>In summary, this study found that the role of probiotics in enhancing the host's resistance to AI depends on the function of ARA generated by CSC. AI can lead to depletion of ARA and interrupting ureagenesis, while CSC-produced ARA supplements ureagenesis in the liver and intestines, facilitating ammonia detoxification into urea. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"163"},"PeriodicalIF":13.8000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255148/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02152-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ammonia generated from amino acid metabolism is a cytotoxin that can adversely affect cell function and overall health and potentially lead to cellular toxicity and death due to its accumulation. Previous studies have shown that acute ammonia intoxication (AI) can increase the intestinal C. somerae abundance, hinting at a possible involvement of C. somerae in the host's reaction to AI. Nonetheless, the precise mechanism through which C. somerae mitigates the effects of AI is uncertain.
Results: This research elucidated the metabolic mechanism of transplanting Cetobacterium somerae ceto (CSC) to assist the host in managing AI. Our results suggest that (I) AI resulted in impaired ureagenesis pathway. This was manifested by elevated levels of ammonia in the blood, liver, and intestines, along with decreased urea levels. (II) Supplementing orally with live CSC facilitated its colonization in the intestines, mitigating AI by reversing depletion of intestinal argininosuccinic acid (ARA) and promoting ureagenesis. (III) CSC synthesized ARA from aspartate and asparagine through the asnA-ansA/B-argG gene cluster. Additionally, CSC assimilated fumaric acid and malic acid from the environment, dampening the degradation of ARA by CSC's fumA-fumB-argH gene cluster. (IV) Live CSC provided ARA support for ureagenesis in the intestine and liver, reducing endogenous ammonia levels of pseudo-sterile yellow catfish. (V) Supplementation of ARA decreased systemic ammonia levels by promoting ureagenesis. Inhibiting the expression of argininosuccinate lyase in the liver through RNA interference can impede arginine synthesis, thereby eliminating the ammonia-lowering effect of ARA.
Conclusion: In summary, this study found that the role of probiotics in enhancing the host's resistance to AI depends on the function of ARA generated by CSC. AI can lead to depletion of ARA and interrupting ureagenesis, while CSC-produced ARA supplements ureagenesis in the liver and intestines, facilitating ammonia detoxification into urea. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.