G. Rodrigues, J. Fonseca, F. Benevenuti, F. Kastensmidt, A. Bosio
{"title":"Exploiting Approximate Computing for Low-Cost Fault Tolerant Architectures","authors":"G. Rodrigues, J. Fonseca, F. Benevenuti, F. Kastensmidt, A. Bosio","doi":"10.1145/3338852.3339875","DOIUrl":"https://doi.org/10.1145/3338852.3339875","url":null,"abstract":"This work investigates how the approximate computing paradigm can be exploited to provide low-cost fault tolerant architectures. In particular, we focus on the implementation of Approximate Triple Modular Redundancy (ATMR) designs using the precision reduction technique. The proposed method is applied to two benchmarks and a multitude of ATMR designs with different degrees of approximation. The benchmarks are implemented on a Xilinx Zynq-7000 APSoC FPGA through high-level synthesis and evaluated concerning area usage and the inaccuracy caused by approximation. Fault injection experiments are performed by flipping bits of the FPGA configuration bitstream. Results show that the proposed approximation method can decrease the DSP usage of the hardware implementation up to 80% and the number of sensitive configuration bits up to 75% while maintaining an accuracy of more than 99.96%.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134357550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luis Schuartz, Artur T. Hara, A. Mariano, B. Leite, E. G. Lima
{"title":"Comparison between Direct and Indirect Learnings for the Digital Pre-distortion of Concurrent Dual-band Power Amplifiers","authors":"Luis Schuartz, Artur T. Hara, A. Mariano, B. Leite, E. G. Lima","doi":"10.1145/3338852.3339842","DOIUrl":"https://doi.org/10.1145/3338852.3339842","url":null,"abstract":"Current radio-communication systems demand high linearity and high efficiency. The digital baseband pre-distorter (DPD) is a cost-effective solution to guarantee the required linearity without compromising the efficiency. In the design of a DPD for a single band power amplifier (PA), the position of the inverse system is exchanged during the identification procedure to avoid the necessity of a PA model within a cumbersome closed-loop process. However, in a practical environment where only an approximation to the inverse is achieved, the linearization capability is affected by shifting the post-inverse placed after the PA to a pre-inverse located before the PA. In DPD intended for concurrent dual-band PAs, an additional advantage of such approach is that the post-inverse identifications for each band are completely independent of each other. This work performs a comparative analysis between two learning architectures applied to the linearization of two concurrent dual-band PAs stimulated by 2.4 GHz Wi-Fi and 3.5 GHz LTE signals. For the first PA, an exact PA model is known and the replacement of a post-inverse to a pre-inverse produces only negligible degradation in linearity. For the second PA, only an approximate PA model is available and the accuracy of such PA model produces a major impact on the linearization capability than the shifting of the inverse.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129717590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FPGA hardware linear regression implementation using fixed-point arithmetic","authors":"W. D. A. P. Ferreira, I. Grout, A. M. Silva","doi":"10.1145/3338852.3339853","DOIUrl":"https://doi.org/10.1145/3338852.3339853","url":null,"abstract":"In this paper, a hardware design based on the field programmable gate array (FPGA) to implement a linear regression algorithm is presented. The arithmetic operations were optimized by applying a fixed-point number representation for all hardware based computations. A floating-point number training data point was initially created and stored in a personal computer (PC) which was then converted to fixed-point representation and transmitted to the FPGA via a serial communication link. With the proposed VHDL design description synthesized and implemented within the FPGA, the custom hardware architecture performs the linear regression algorithm based on matrix algebra considering a fixed size training data point set. To validate the hardware fixed-point arithmetic operations, the same algorithm was implemented in the Python language and the results of the two computation approaches were compared. The power consumption of the proposed embedded FPGA system was estimated to be 136.82 mW.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128690087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adriana Arevalo, Romain Liautard, Daniel Romero, L. Trojman, L. Prócel
{"title":"New Insight for next Generation SRAM: Tunnel FET versus FinFET for Different Topologies","authors":"Adriana Arevalo, Romain Liautard, Daniel Romero, L. Trojman, L. Prócel","doi":"10.1145/3338852.3339871","DOIUrl":"https://doi.org/10.1145/3338852.3339871","url":null,"abstract":"The purpose of this work is to point out the main differences between a Static Random-Access Memory (SRAM) cells implemented by using Tunnel FET (TFET) and FinFET technologies. We have compared the behavior of SRAM cells implemented in both technologies cells for a supply voltage range from 0.4V to 1.2V. Furthermore, for our study, we have chosen different SRAM cell topologies, such as 6T, 8T, 9T and 10T. Therefore, we have simulated all of these topologies for both technologies and extracted the Static Noise Margins (SNM) for the reading and writing processes. In addition, we have determined the power consumption in order to find the best trade-off between stability and power. By analyzing these results, we have determined the best topology for each technology. Finally, we have compared these best topologies for each technology in order to perform a study of advantages and shortcomings. Our results show more advantages using TFET technology instead of FinFET one.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130142466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Behavioral Modeling of a Control Module for an Energy-investing Piezoelectric Harvester","authors":"Tales Luiz Bortolin, A. Aita, J. B. Martins","doi":"10.1145/3338852.3339855","DOIUrl":"https://doi.org/10.1145/3338852.3339855","url":null,"abstract":"This work analyzes a piezoelectric energy harvesting system that uses a single inductor and the concept of energy investment. The harvester behavior, with special focus on its control logic module and state machine, is fully described and modeled in Verilog-A. The needed sensors and control variables were also identified and modeled. Simulation results have shown the correct behavioral modeling of the piezoelectric energy harvester system and proposed control, highlighting the harvesting mechanism based on the concept of energy-investment and the effect of the energy invested on the characteristics of the battery charging profile. The speed of the behavioral simulations when compared to electrical ones and the obtained model accuracy, have shown a reliable and prospective higher-level design approach.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115712610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guilherme Apolinario Silva Novaes, L. C. Moreira, W. Chau
{"title":"Exploring Tabu Search Based Algorithms for Mapping and Placement in NoC-based Reconfigurable Systems","authors":"Guilherme Apolinario Silva Novaes, L. C. Moreira, W. Chau","doi":"10.1145/3338852.3339843","DOIUrl":"https://doi.org/10.1145/3338852.3339843","url":null,"abstract":"Nowadays, the development of systems based on Networks-on-Chip (NoCs) brings big challenges to the designers due to problems of scalability, such as efficient Mapping and Placement, which are NP-hard problems. Several solutions have been proposed to solve this type of problem that is a variation of Quadratic Assignment Problems (QAP), being Tabu Search (TS) algorithms the ones showing most promising results. In NoC-based dynamically reconfigurable systems (NoC-DRSs), both mapping and placement problems present several layers of complexity due the reconfigurable scenarios. A previous work has adopted TS algorithm variations, but the best solution is not achieved with the wished high frequency. This paper introduces the original Forced Inversion (FI) Heuristic over Tabu Search algorithms for 2D-Mesh FPGA NoC-DRSs, in order to avoid local minima. Results with a series of benchmarks are presented and the performances of different approaches are quantitatively and qualitatively compared.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116496009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Sant'Ana, Henrique Martins Medina, Kevin Boucinha Fiorentin, F. Moraes
{"title":"Lightweight Security Mechanisms for MPSoCs","authors":"A. Sant'Ana, Henrique Martins Medina, Kevin Boucinha Fiorentin, F. Moraes","doi":"10.1145/3338852.3339876","DOIUrl":"https://doi.org/10.1145/3338852.3339876","url":null,"abstract":"Computational systems tend to adopt parallel architectures, by using multiprocessor systems-on-chip (MPSoCs). MPSoCs are vulnerable to software and hardware attacks, as infected applications and Hardware Trojans respectively. These attacks may have the purpose to gain access to sensitive data, interrupt a given application or even damage the system physically. The literature presents countermeasures using dedicated routing algorithms, cryptography, firewalls and secure zones. These approaches present a significant hardware cost (firewalls, cryptography) or are too restrictive regarding the use of MPSoC resources (secure zones). The goal of this paper is to present lightweight security mechanisms for MPSoCs, using four techniques: spatial isolation of applications; dedicated network to send sensitive data; traffic blocking filter; lightweight cryptography. These mechanisms protect the MPSoC against the most common software attacks, as Denial of Service (DoS) and spoofing (man-in-the-middle), and ensures confidentiality and integrity to applications. Results present low area and latency overhead, as well as the effectiveness of using the mechanisms to block malicious traffic.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"13 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131754785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pietro M. Ferreira, Nathan De Carvalho, G. Klisnick, Aziz Benlarbi-Delaï
{"title":"Energy efficient fJ/spike LTS e-Neuron using 55-nm node","authors":"Pietro M. Ferreira, Nathan De Carvalho, G. Klisnick, Aziz Benlarbi-Delaï","doi":"10.1145/3338852.3339852","DOIUrl":"https://doi.org/10.1145/3338852.3339852","url":null,"abstract":"While CMOS technology is currently reaching its limits in power consumption and circuit density, a challenger is emerging from the analogy between biology and silicon. Hardware-based neural networks may drive a new generation of bio-inspired computers by the urge of a hardware solution for real-time applications. This paper redesigns a previous proposed electronic neuron (e-Neuron) in a higher firing rate to reduce the silicon area and highlight a better energy efficiency trade-off. Besides, an innovative schematic is proposed to state an e-Neuron library based on Izhikevichs model of neural firing patterns. Both e-Neuron circuits are designed using 55 nm technology node. Physical design of transistors in weak inversion are discussed to a minimal leakage. Neural firing pattern behaviors are validated by post-layout simulations, demonstrating the spike frequency adaptation and the rebound spikes due to post-inhibitory effect in LTS e-Neuron. Presented results suggest that the time to rebound spikes is dependent of the excitation current amplitude. Both e-Neurons have presented a fF/spike energy efficiency and a smaller silicon area in comparison to Izhikevichs library propositions in the literature.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"32 6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129148829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hardware Design of DC/CFL Intra-Prediction Decoder for the AV1 Codec","authors":"J. Goebel, B. Zatt, L. Agostini, M. Porto","doi":"10.1145/3338852.3339873","DOIUrl":"https://doi.org/10.1145/3338852.3339873","url":null,"abstract":"This paper presents a dedicated hardware design for the DC and Chroma from Luma (CFL) intra-prediction modes of AV1 decoder. The hardware was designed to reach real-time when processing UHD 4K videos. The AV1 codec is an open-source and royalties-free video coding, which was developed by the AOMedia group, this group is composed of multiple companies like Google, Netflix, AMD, ARM, Intel, Nvidia, Microsoft, Mozilla and others. The proposed solution can support all 19 block sizes allowed in AV1 encoder, being able to process UHD 4K videos at 60 frames per second. The DC/CFL modules were synthesized to the TSMC 40 nm cells library targeting the frequency of 132.1 MHz. Synthesis results show the proposed hardware used 89.39 Kgates and a power dissipation of 7.96mW.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117324001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Huang, C. Lelandais-Perrault, A. Kolar, P. Bénabès
{"title":"A new algorithm for an incremental sigma-delta converter reconstruction filter","authors":"Li Huang, C. Lelandais-Perrault, A. Kolar, P. Bénabès","doi":"10.1145/3338852.3339839","DOIUrl":"https://doi.org/10.1145/3338852.3339839","url":null,"abstract":"Image sensors dedicated for the applications of the Earth observation require medium-speed and high-resolution analog-to-digital converters (ADCs). For that purpose, an incremental sigma-delta analog-to-digital converter (IΣ∆ ADC) has been designed. Post-layout simulations highlighted a degradation in resolution caused by the circuit imperfections. Therefore, a digital correction has been investigated. This paper proposes a new reconstruction filter which takes into account not only the bit values of the modulator output sequence but also the occurrence of certain patterns. This technique has been applied to an incremental sigma-delta analog-to-digital converter in order to correct the conversion errors. Performing with 400 clock periods for each conversion cycle, the theoretical resolution is 15.4 bits. Post-layout simulation shows that a 13.5-bit resolution is obtained by using the classical optimal filter whereas a 14.8-bit resolution is obtained with our reconstruction filter.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128133409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}