Luis Schuartz, Artur T. Hara, A. Mariano, B. Leite, E. G. Lima
{"title":"并行双频功率放大器数字预失真直接学习与间接学习的比较","authors":"Luis Schuartz, Artur T. Hara, A. Mariano, B. Leite, E. G. Lima","doi":"10.1145/3338852.3339842","DOIUrl":null,"url":null,"abstract":"Current radio-communication systems demand high linearity and high efficiency. The digital baseband pre-distorter (DPD) is a cost-effective solution to guarantee the required linearity without compromising the efficiency. In the design of a DPD for a single band power amplifier (PA), the position of the inverse system is exchanged during the identification procedure to avoid the necessity of a PA model within a cumbersome closed-loop process. However, in a practical environment where only an approximation to the inverse is achieved, the linearization capability is affected by shifting the post-inverse placed after the PA to a pre-inverse located before the PA. In DPD intended for concurrent dual-band PAs, an additional advantage of such approach is that the post-inverse identifications for each band are completely independent of each other. This work performs a comparative analysis between two learning architectures applied to the linearization of two concurrent dual-band PAs stimulated by 2.4 GHz Wi-Fi and 3.5 GHz LTE signals. For the first PA, an exact PA model is known and the replacement of a post-inverse to a pre-inverse produces only negligible degradation in linearity. For the second PA, only an approximate PA model is available and the accuracy of such PA model produces a major impact on the linearization capability than the shifting of the inverse.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison between Direct and Indirect Learnings for the Digital Pre-distortion of Concurrent Dual-band Power Amplifiers\",\"authors\":\"Luis Schuartz, Artur T. Hara, A. Mariano, B. Leite, E. G. Lima\",\"doi\":\"10.1145/3338852.3339842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current radio-communication systems demand high linearity and high efficiency. The digital baseband pre-distorter (DPD) is a cost-effective solution to guarantee the required linearity without compromising the efficiency. In the design of a DPD for a single band power amplifier (PA), the position of the inverse system is exchanged during the identification procedure to avoid the necessity of a PA model within a cumbersome closed-loop process. However, in a practical environment where only an approximation to the inverse is achieved, the linearization capability is affected by shifting the post-inverse placed after the PA to a pre-inverse located before the PA. In DPD intended for concurrent dual-band PAs, an additional advantage of such approach is that the post-inverse identifications for each band are completely independent of each other. This work performs a comparative analysis between two learning architectures applied to the linearization of two concurrent dual-band PAs stimulated by 2.4 GHz Wi-Fi and 3.5 GHz LTE signals. For the first PA, an exact PA model is known and the replacement of a post-inverse to a pre-inverse produces only negligible degradation in linearity. For the second PA, only an approximate PA model is available and the accuracy of such PA model produces a major impact on the linearization capability than the shifting of the inverse.\",\"PeriodicalId\":184401,\"journal\":{\"name\":\"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338852.3339842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338852.3339842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison between Direct and Indirect Learnings for the Digital Pre-distortion of Concurrent Dual-band Power Amplifiers
Current radio-communication systems demand high linearity and high efficiency. The digital baseband pre-distorter (DPD) is a cost-effective solution to guarantee the required linearity without compromising the efficiency. In the design of a DPD for a single band power amplifier (PA), the position of the inverse system is exchanged during the identification procedure to avoid the necessity of a PA model within a cumbersome closed-loop process. However, in a practical environment where only an approximation to the inverse is achieved, the linearization capability is affected by shifting the post-inverse placed after the PA to a pre-inverse located before the PA. In DPD intended for concurrent dual-band PAs, an additional advantage of such approach is that the post-inverse identifications for each band are completely independent of each other. This work performs a comparative analysis between two learning architectures applied to the linearization of two concurrent dual-band PAs stimulated by 2.4 GHz Wi-Fi and 3.5 GHz LTE signals. For the first PA, an exact PA model is known and the replacement of a post-inverse to a pre-inverse produces only negligible degradation in linearity. For the second PA, only an approximate PA model is available and the accuracy of such PA model produces a major impact on the linearization capability than the shifting of the inverse.