能量投资型压电采集器控制模块的行为建模

Tales Luiz Bortolin, A. Aita, J. B. Martins
{"title":"能量投资型压电采集器控制模块的行为建模","authors":"Tales Luiz Bortolin, A. Aita, J. B. Martins","doi":"10.1145/3338852.3339855","DOIUrl":null,"url":null,"abstract":"This work analyzes a piezoelectric energy harvesting system that uses a single inductor and the concept of energy investment. The harvester behavior, with special focus on its control logic module and state machine, is fully described and modeled in Verilog-A. The needed sensors and control variables were also identified and modeled. Simulation results have shown the correct behavioral modeling of the piezoelectric energy harvester system and proposed control, highlighting the harvesting mechanism based on the concept of energy-investment and the effect of the energy invested on the characteristics of the battery charging profile. The speed of the behavioral simulations when compared to electrical ones and the obtained model accuracy, have shown a reliable and prospective higher-level design approach.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Behavioral Modeling of a Control Module for an Energy-investing Piezoelectric Harvester\",\"authors\":\"Tales Luiz Bortolin, A. Aita, J. B. Martins\",\"doi\":\"10.1145/3338852.3339855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work analyzes a piezoelectric energy harvesting system that uses a single inductor and the concept of energy investment. The harvester behavior, with special focus on its control logic module and state machine, is fully described and modeled in Verilog-A. The needed sensors and control variables were also identified and modeled. Simulation results have shown the correct behavioral modeling of the piezoelectric energy harvester system and proposed control, highlighting the harvesting mechanism based on the concept of energy-investment and the effect of the energy invested on the characteristics of the battery charging profile. The speed of the behavioral simulations when compared to electrical ones and the obtained model accuracy, have shown a reliable and prospective higher-level design approach.\",\"PeriodicalId\":184401,\"journal\":{\"name\":\"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338852.3339855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338852.3339855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文分析了一种单电感式压电能量收集系统和能量投入的概念。在Verilog-A中对收割机的行为进行了完整的描述和建模,特别关注其控制逻辑模块和状态机。还对所需的传感器和控制变量进行了识别和建模。仿真结果验证了压电能量收集系统的正确行为建模和所提出的控制方法,突出了基于能量投入概念的能量收集机制以及能量投入对电池充电曲线特性的影响。与电模拟相比,行为模拟的速度和模型的精度显示了一种可靠的、有前景的高级设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavioral Modeling of a Control Module for an Energy-investing Piezoelectric Harvester
This work analyzes a piezoelectric energy harvesting system that uses a single inductor and the concept of energy investment. The harvester behavior, with special focus on its control logic module and state machine, is fully described and modeled in Verilog-A. The needed sensors and control variables were also identified and modeled. Simulation results have shown the correct behavioral modeling of the piezoelectric energy harvester system and proposed control, highlighting the harvesting mechanism based on the concept of energy-investment and the effect of the energy invested on the characteristics of the battery charging profile. The speed of the behavioral simulations when compared to electrical ones and the obtained model accuracy, have shown a reliable and prospective higher-level design approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信