MembranesPub Date : 2024-05-26DOI: 10.3390/membranes14060123
Matthis Kurth, Mudassar Javed, Thomas Schliermann, Georg Brösigke, Susanne Kämnitz, Suresh K Bhatia, Jens-Uwe Repke
{"title":"Pure Hydrogen and Methane Permeation in Carbon-Based Nanoporous Membranes: Adsorption Isotherms and Permeation Experiments.","authors":"Matthis Kurth, Mudassar Javed, Thomas Schliermann, Georg Brösigke, Susanne Kämnitz, Suresh K Bhatia, Jens-Uwe Repke","doi":"10.3390/membranes14060123","DOIUrl":"10.3390/membranes14060123","url":null,"abstract":"<p><p>This paper presents the results of adsorption and permeation experiments of hydrogen and methane at elevated temperatures on a carbon-based nanoporous membrane material provided by Fraunhofer IKTS. The adsorption of pure components was measured between 90 °C and 120°C and pressures up to 45 bar. The Langmuir adsorption isotherm shows the best fit for all data points. Compared to available adsorption isotherms of H<sub>2</sub> and CH<sub>4</sub> on carbon, the adsorption on the investigated nanoporous carbon structures is significantly lower. Single-component permeation experiments were conducted on membranes at temperatures up to 220 °C. After combining the experimental results with a Maxwell-Stefan surface diffusion model, Maxwell-Stefan surface diffusion coefficients Dis were calculated. The calculated values are in line with an empirical model and thus can be used in future multi-component modeling approaches in order to better analyze and design a membrane system. The published adsorption data fill a gap in the available adsorption data for CH<sub>4</sub> and H<sub>2</sub>.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 6","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11205412/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In Situ-Grown Al<sub>2</sub>O<sub>3</sub> Nanoflowers and Hydrophobic Modification Enable Superhydrophobic SiC Ceramic Membranes for Membrane Distillation.","authors":"Yuqi Song, Kai Miao, Jinxin Liu, Yutang Kang, Dong Zou, Zhaoxiang Zhong","doi":"10.3390/membranes14050117","DOIUrl":"10.3390/membranes14050117","url":null,"abstract":"<p><p>Membrane distillation (MD) is considered a promising technology for desalination. In the MD process, membrane pores are easily contaminated and wetted, which will degrade the permeate flux and salt rejection of the membrane. In this work, SiC ceramic membranes were used as the supports, and an Al<sub>2</sub>O<sub>3</sub> micro-nano structure was constructed on its surface. The surface energy of Al<sub>2</sub>O<sub>3</sub>@SiC micro-nano composite membranes was reduced by organosilane grafting modification. The effective deposition of Al<sub>2</sub>O<sub>3</sub> nanoflowers on the membrane surface increased membrane roughness and enhanced the anti-fouling and anti-wetting properties of the membranes. Simultaneously, the presence of nanoflowers also regulated the pore structures and thus decreased the membrane pore size. In addition, the effects of Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> concentration and sintering temperature on the surface morphology and performance of the membranes were investigated in detail. It was demonstrated that the water contact angle of the resulting membrane was 152.4°, which was higher than that of the pristine membrane (138.8°). In the treatment of saline water containing 35 g/L of NaCl, the permeate flux was about 11.1 kg⋅m<sup>-2</sup>⋅h<sup>-1</sup> and the salt rejection was above 99.9%. Note that the pristine ceramic membrane cannot be employed for MD due to its larger membrane pore size. This work provides a new method for preparing superhydrophobic ceramic membranes for MD.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 5","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-04-30DOI: 10.3390/membranes14050104
Amal M A Mohamed, Hosahalli S Ramaswamy
{"title":"Effect of Soybean Oil on the Improvement of the Functionality of Edible Membrane-Type Food Packaging Films Based on Caseinate-Carboxymethyl Chitosan Compositions.","authors":"Amal M A Mohamed, Hosahalli S Ramaswamy","doi":"10.3390/membranes14050104","DOIUrl":"10.3390/membranes14050104","url":null,"abstract":"<p><p>Edible film biopolymers are gaining attention to tackle problems of plastic waste and food safety to alleviate environmental problems associated with plastic products in food packaging. In this study, caseinate-carboxymethyl chitosan (CA-CMCH) composite films were made with the incorporation of soybean oil (SO) using a casting technique. The influence of different soybean oil concentrations at 0, 0.5, and 1% (<i>w</i>/<i>w</i>) on physical, mechanical, barrier, and surface characteristics of films composed of caseinate-carboxymethyl chitosan (CA-CMCH) was evaluated. The brightest film (L* value of 95.95 ± 0.30) was obtained with the edible film made from the control group of samples with sodium caseinate (NaCA-100; 100% NaCA). The results also indicated that samples with 1% SO in NaCA-75 and CaCA-75 had lower water vapor permeability (WVP), while those with NaCA-50 and CaCA-50 showed higher values of WVP. For mechanical properties, this study found that incorporating soybean oil into the caseinate-carboxymethyl (CA-CMCH) composite films led to an enhancement of both tensile strength and elongation at break. The morphological structures, determined using SEM, of control and composite films showed compact and homogenous surfaces. Overall, the addition of soybean oil contributed to the improvement of the functional properties of the edible films, offering potential solutions to the environmental issues associated with plastic packaging and enhancing the safety and performance of food packaging.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 5","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-04-29DOI: 10.3390/membranes14050103
Marian Turek, Krzysztof Mitko, Paweł Skóra
{"title":"Applying Nanofiltration to Decrease Energy Consumption and Sensitivity toward Feed Composition Fluctuations in Salt Production.","authors":"Marian Turek, Krzysztof Mitko, Paweł Skóra","doi":"10.3390/membranes14050103","DOIUrl":"10.3390/membranes14050103","url":null,"abstract":"<p><p>The only currently active industrial-scale plant that uses coal mine brines, located in Czerwionka-Leszczyny, uses ZOD (Zakład Odsalania Dębieńsko, the name of the plant's former owner) technology, based on mechanical vapor compression evaporators. The plant produces evaporated salt that meets the specifications for edible salt; however, the technology is highly energy-consuming. The presented work focuses on the modeling of ZOD technology if applied to the water treatment of the 'Ziemowit-650' coal mine. Using the results of bench-scale investigation of brine nanofiltration and a mathematical model of ZOD technology based on Czerwionka-Leszczyny performance, the energy consumption per ton of produced salt was estimated for two cases: (1) ZOD technology treating the 'Ziemowit-650' brine and (2) ZOD technology treating the permeate of nanofiltration (NF) working on the 'Ziemowit-650' brine. The sensitivity of the system was investigated in the range of -10% to + 10% of Cl<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, Mg<sup>2+</sup>, and Ca<sup>2+</sup> concentration, assuming that the sodium concentration also changes to meet the electroneutrality requirement. The results show that nanofiltration pretreatment not only decreases energy consumption but it also makes salt production less sensitive to fluctuations in feed water composition.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 5","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-04-29DOI: 10.3390/membranes14050102
Ricardo Reyes Alva, Marius Mohr, Susanne Zibek
{"title":"Transmembrane Chemical Absorption Process for Recovering Ammonia as an Organic Fertilizer Using Citric Acid as the Trapping Solution.","authors":"Ricardo Reyes Alva, Marius Mohr, Susanne Zibek","doi":"10.3390/membranes14050102","DOIUrl":"10.3390/membranes14050102","url":null,"abstract":"<p><p>Membrane contactors are among the available technologies that allow a reduction in the amount of ammoniacal nitrogen released into the environment through a process called transmembrane chemical absorption (TMCA). This process can be operated with different substances acting as trapping solutions; however, strong inorganic acids have been studied the most. The purpose of this study was to demonstrate, at laboratory scale, the performance of citric acid as a capturing solution in TMCA processes for recovering ammonia as an organic fertilizer from anaerobic digestor reject water using membrane contactors in a liquid-liquid configuration and to compare it with the most studied solution, sulfuric acid. The experiments were carried out at 22 °C and 40 °C and with a feed water pH of 10 and 10.5. When the system was operated at pH 10, the rates of recovered ammonia from the feed solution obtained with citric acid were 10.7-16.5 percentage points (pp) lower compared to sulfuric acid, and at pH 10.5, the difference decreased to 5-10 pp. Under all tested conditions, the water vapor transport in the system was lower when using citric acid as the trapping solution, and at pH 10 and 40 °C, it was 5.7 times lower. When estimating the operational costs for scaling up the system, citric acid appears to be a better option than sulfuric acid as a trapping solution, but in both cases, the process was not profitable under the studied conditions.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 5","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-04-29DOI: 10.3390/membranes14050101
Alexey Y Dobrovskiy, Victor M Nazarychev, Igor V Volgin, Sergey V Lyulin
{"title":"Correction: Dobrovskiy et al. The Transport Properties of Semi-Crystalline Polyetherimide BPDA-P3 in Amorphous and Ordered States: Computer Simulations. <i>Membranes</i> 2022, <i>12</i>, 856.","authors":"Alexey Y Dobrovskiy, Victor M Nazarychev, Igor V Volgin, Sergey V Lyulin","doi":"10.3390/membranes14050101","DOIUrl":"10.3390/membranes14050101","url":null,"abstract":"<p><p>The authors wish to make a change to the published paper [...].</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 5","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-04-26DOI: 10.3390/membranes14050100
Annarosa Gugliuzza, Cristiana Boi
{"title":"Editorial for the Special Issue \"Preparation and Application of Advanced Functional Membranes\".","authors":"Annarosa Gugliuzza, Cristiana Boi","doi":"10.3390/membranes14050100","DOIUrl":"10.3390/membranes14050100","url":null,"abstract":"<p><p>Membrane science is a discipline that cuts across almost all fields of research and experimentation [...].</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 5","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-04-25DOI: 10.3390/membranes14050098
Chii-Dong Ho, Yi-Wun Wang, Yi Chao, Thiam Leng Chew, Ming-Shen Jiang, Jian-Har Chen, Ching-Yu Li
{"title":"Enhancing the Permeate Flux Improvement of Direct Contact Membrane Distillation Modules with Inserted S-Ribs Carbon-Fiber Filaments.","authors":"Chii-Dong Ho, Yi-Wun Wang, Yi Chao, Thiam Leng Chew, Ming-Shen Jiang, Jian-Har Chen, Ching-Yu Li","doi":"10.3390/membranes14050098","DOIUrl":"10.3390/membranes14050098","url":null,"abstract":"<p><p>Three widths of manufacturing S-ribs carbon-fiber filaments acting as turbulence promoters were implemented into the flow channel of direct contact membrane distillation (DCMD) modules to augment the permeate flux improvement in the present study. Attempts to reduce the disadvantageous temperature polarization effect were made by inserting S-ribs turbulence promoters in improving pure water productivity, in which both heat- and mass-transfer boundary layers were diminished due to creating vortices in the flow pattern and increasing turbulence intensity. The temperature polarization coefficient ttemp was studied and found to enhance device performance (less thermal resistance) under inserting various S-ribs carbon-fiber thicknesses and operating both cocurrent- and countercurrent-flow patterns. The permeate fluxes in the DCMD modules with inserted S-ribs carbon-fiber turbulence promoters were investigated theoretically by developing the mathematical modeling equations and were conducted experimentally with various design and operating parameters. The theoretical predictions and experimental results exhibited a great potential to considerably achieve permeate flux enhancement in the new design of the DCMD system. The DCMD module with inserted S-ribs carbon-fiber turbulence promoters in the flow channel could provide a relative permeate flux enhancement up to 37.77% under countercurrent-flow operations in comparisons with the module of using the empty channel. An economic consideration on both permeate flux enhancement and power consumption increment for the module with inserted S-ribs carbon-fiber filaments was also delineated.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 5","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122939/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-04-25DOI: 10.3390/membranes14050099
Zichen Li, Yumei Wang, Jianxin Zhang, Shiqi Cheng, Yue Sun
{"title":"A Short Review of Advances in MOF Glass Membranes for Gas Adsorption and Separation.","authors":"Zichen Li, Yumei Wang, Jianxin Zhang, Shiqi Cheng, Yue Sun","doi":"10.3390/membranes14050099","DOIUrl":"10.3390/membranes14050099","url":null,"abstract":"<p><p>The phenomenon of melting in metal-organic frameworks (MOFs) has recently garnered attention. Crystalline MOF materials can be transformed into an amorphous glassy state through melt-quenching treatment. The resulting MOF glass structure eliminates grain boundaries and retains short-range order while exhibiting long-range disorder. Based on these properties, it emerges as a promising candidate for high-performance separation membranes. MOF glass membranes exhibit permanent and accessible porosity, allowing for selective adsorption of different gas species. This review summarizes the melting mechanism of MOFs and explores the impact of ligands and metal ions on glassy MOFs. Additionally, it presents an analysis of the diverse classes of MOF glass composites, outlining their structures and properties, which are conducive to gas adsorption and separation. The absence of inter-crystalline defects in the structures, coupled with their distinctive mechanical properties, renders them highly promising for industrial gas separation applications. Furthermore, this review provides a summary of recent research on MOF glass composite membranes for gas adsorption and separation. It also addresses the challenges associated with membrane production and suggests future research directions.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 5","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enrichment of Nutmeg Essential Oil from Oil-in-Water Emulsions with PAN-Based Membranes.","authors":"Huilan Yin, Haoyu Zhang, Jiaoyang Cui, Qianlian Wu, Linlin Huang, Jiaoyue Qiu, Xin Zhang, Yanyu Xiang, Bo Li, Hongbo Liu, Zhishu Tang, Yue Zhang, Huaxu Zhu","doi":"10.3390/membranes14050097","DOIUrl":"10.3390/membranes14050097","url":null,"abstract":"<p><p>This study used polyacrylonitrile (PAN) and heat-treated polyacrylonitrile (H-PAN) membranes to enrich nutmeg essential oils, which have more complex compositions compared with common oils. The oil rejection rate of the H-PAN membrane was higher than that of the PAN membrane for different oil concentrations of nutmeg essential oil-in-water emulsions. After heat treatment, the H-PAN membrane showed a smaller pore size, narrower pore size distribution, a rougher surface, higher hydrophilicity, and higher oleophobicity. According to the GC-MS results, the similarities of the essential oils enriched by the PAN and H-PAN membranes to those obtained by steam distillation (SD) were 0.988 and 0.990, respectively. In addition, these two membranes also exhibited higher essential oil rejection for Bupleuri Radix, Magnolia Officinalis Cortex, Caryophylli Flos, and Cinnamomi Cortex essential oil-in-water emulsions. This work could provide a reference for membrane technology for the non-destructive separation of oil with complex components from oil-in-water emulsions.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 5","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122826/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}