Characterization, Performance, and Toxicological Assessment of Polysulfone-Sulfonated Polyether Ether Ketone Membranes for Water Separation Applications.

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Muhammad Usman Yousaf, Lucca Madeo Cortarelli, Nerissa I Jebet, Jason M Unrine, Nirupam Aich, Olga V Tsyusko, Isabel C Escobar
{"title":"Characterization, Performance, and Toxicological Assessment of Polysulfone-Sulfonated Polyether Ether Ketone Membranes for Water Separation Applications.","authors":"Muhammad Usman Yousaf, Lucca Madeo Cortarelli, Nerissa I Jebet, Jason M Unrine, Nirupam Aich, Olga V Tsyusko, Isabel C Escobar","doi":"10.3390/membranes15030087","DOIUrl":null,"url":null,"abstract":"<p><p>The removal of small molecular weight charged compounds from aqueous solutions using membrane remains a challenge. In this study, polysulfone (PSf)- and sulfonated polyether ether ketone (SPEEK)-based membranes were fabricated via non-solvent induced phase separation process (NIPS) using N-Methyl-2-Pyrrolidone (NMP) as solvent and water as non-solvent. Membranes were characterized structurally and morphologically, followed by toxicity assessment conducted before and after filtration, both with and without annealing at various pH values to evaluate potential leaching of trapped solvent from the membrane pores. Additionally, membrane performance was characterized using binary mixtures of cationic and anionic dyes. The results demonstrated selective filtration behavior, with cationic dyes being preferentially rejected due to size exclusion and electrostatic interactions. Additionally, a key focus of this work was the investigation of solvent leaching, framed within a Safe(r)-by-Design (SbD) approach aimed at enhancing functional performance while minimizing environmental toxicity. Toxicity assessments using a model organism, a nematode <i>Caenorhabditis elegans</i>, revealed that annealing reduced solvent leaching and thus permeate toxicity, particularly at neutral pH values, by facilitating trapped solvent release prior to membrane use. These findings provide insights for the importance of including an SbD approach during membrane casting to fabricate membranes with desirable properties while minimizing toxicity.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943734/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15030087","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The removal of small molecular weight charged compounds from aqueous solutions using membrane remains a challenge. In this study, polysulfone (PSf)- and sulfonated polyether ether ketone (SPEEK)-based membranes were fabricated via non-solvent induced phase separation process (NIPS) using N-Methyl-2-Pyrrolidone (NMP) as solvent and water as non-solvent. Membranes were characterized structurally and morphologically, followed by toxicity assessment conducted before and after filtration, both with and without annealing at various pH values to evaluate potential leaching of trapped solvent from the membrane pores. Additionally, membrane performance was characterized using binary mixtures of cationic and anionic dyes. The results demonstrated selective filtration behavior, with cationic dyes being preferentially rejected due to size exclusion and electrostatic interactions. Additionally, a key focus of this work was the investigation of solvent leaching, framed within a Safe(r)-by-Design (SbD) approach aimed at enhancing functional performance while minimizing environmental toxicity. Toxicity assessments using a model organism, a nematode Caenorhabditis elegans, revealed that annealing reduced solvent leaching and thus permeate toxicity, particularly at neutral pH values, by facilitating trapped solvent release prior to membrane use. These findings provide insights for the importance of including an SbD approach during membrane casting to fabricate membranes with desirable properties while minimizing toxicity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信