{"title":"The Application of TiO<sub>2</sub>/ZrO<sub>2</sub>-Modified Nanocomposite PES Membrane for Improved Permeability of Textile Dye in Water.","authors":"Sibukiso Thobani Nhlengethwa, Charmaine Sesethu Tshangana, Bhekie Brilliance Mamba, Adolph Anga Muleja","doi":"10.3390/membranes14100222","DOIUrl":"https://doi.org/10.3390/membranes14100222","url":null,"abstract":"<p><p>This study investigates the modification of polyethersulfone (PES) membranes with 1 wt% titanium dioxide (TiO<sub>2</sub>), zirconium dioxide (ZrO<sub>2</sub>) and a nanocomposite of TiO<sub>2</sub>/ZrO<sub>2</sub>. The aim was to efficiently remove Rhodamine B (RhB) from water using a threefold approach of adsorption, filtration and photodegradation. Among the modified membranes (TiO<sub>2</sub>, ZrO<sub>2</sub> and TiO<sub>2</sub>/ZrO<sub>2</sub>), the TiO<sub>2</sub>/ZrO<sub>2</sub>-PES nanocomposite membrane showed a better performance in rejection of RhB than other membranes with the rejection efficiency of 96.5%. The TiO<sub>2</sub>/ZrO<sub>2</sub>-PES membrane was found to possess a thicker selective layer and reduced mean pore radius, which contributed to its improved rejection. The TiO<sub>2</sub>/ZrO<sub>2</sub> nanocomposite membrane also showed high bulk porosity and a slightly lower contact angle of 69.88° compared to pristine PES with a value of 73°, indicating an improvement in hydrophilicity. Additionally, the TiO<sub>2</sub>/ZrO<sub>2</sub>-PES nanocomposite membrane demonstrated a relatively lower surface roughness (Sa) of 8.53 nm, which offers the membrane antifouling properties. The TiO<sub>2</sub>/ZrO<sub>2</sub>-PES membrane showed flux recovery ratio (FRR), total fouling (R<sub>t</sub>), reversible fouling (R<sub>r</sub>) and irreversible fouling (R<sub>ir</sub>) of 48.0%, 88.7%, 36,8% and 52.9%, respectively. For the photocatalytic degradation performance, the removal efficiency of RhB followed this order TiO<sub>2</sub> > TiO<sub>2</sub>/ZrO<sub>2</sub> > ZrO<sub>2</sub> (87.6%, 85.7%, 67.8%). The tensile strength and elongation were found to be compromised with the addition of nanoparticles and nanocomposites. This indicates the necessity to further modify and optimise membrane fabrication to achieve improved mechanical strength of the membranes. At low pressure, the overall findings suggest that the TiO<sub>2</sub>/ZrO<sub>2</sub> nanocomposite has the potential to offer significant improvements in membrane performance (water flux) compared to other modifications.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-10-17DOI: 10.3390/membranes14100221
Yasushi Maeda
{"title":"Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism.","authors":"Yasushi Maeda","doi":"10.3390/membranes14100221","DOIUrl":"https://doi.org/10.3390/membranes14100221","url":null,"abstract":"<p><p>Reverse osmosis (RO) and nanofiltration (NF) are ubiquitous technologies in modern water treatment, finding applications across various sectors. However, the availability of high-quality water suitable for RO/NF feed is diminishing due to droughts caused by global warming, increasing demand, and water pollution. As concerns grow over the depletion of precious freshwater resources, a global movement is gaining momentum to utilize previously overlooked or challenging water sources, collectively known as \"marginal water\". Fouling is a serious concern when treating marginal water. In RO/NF, biofouling, organic and colloidal fouling, and scaling are particularly problematic. Of these, organic fouling, along with biofouling, has been considered difficult to manage. The major organic foulants studied are natural organic matter (NOM) for surface water and groundwater and effluent organic matter (EfOM) for municipal wastewater reuse. Polymeric substances such as sodium alginate, humic acid, and proteins have been used as model substances of EfOM. Fouling by low molecular weight organic compounds (LMWOCs) such as surfactants, phenolics, and plasticizers is known, but there have been few comprehensive reports. This review aims to shed light on fouling behavior by LMWOCs and its mechanism. LMWOC foulants reported so far are summarized, and the role of LMWOCs is also outlined for other polymeric membranes, e.g., UF, gas separation membranes, etc. Regarding the mechanism of fouling, it is explained that the fouling is caused by the strong interaction between LMWOC and the membrane, which causes the water permeation to be hindered by LMWOCs adsorbed on the membrane surface (surface fouling) and sorbed inside the membrane pores (internal fouling). Adsorption amounts and flow loss caused by the LMWOC fouling were well correlated with the octanol-water partition coefficient (log P). In part 2, countermeasures to solve this problem and applications using the LMWOCs will be outlined.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-10-17DOI: 10.3390/membranes14100220
Juan M Giraldo-Lorza, Chad Leidy, Marcela Manrique-Moreno
{"title":"The Influence of Cholesterol on Membrane Targeted Bioactive Peptides: Modulating Peptide Activity Through Changes in Bilayer Biophysical Properties.","authors":"Juan M Giraldo-Lorza, Chad Leidy, Marcela Manrique-Moreno","doi":"10.3390/membranes14100220","DOIUrl":"https://doi.org/10.3390/membranes14100220","url":null,"abstract":"<p><p>Cholesterol is a biological molecule that is essential for cellular life. It has unique features in terms of molecular structure and function, and plays an important role in determining the structure and properties of cell membranes. One of the most recognized functions of cholesterol is its ability to increase the level of lipid packing and rigidity of biological membranes while maintaining high levels of lateral mobility of the bulk lipids, which is necessary to sustain biochemical signaling events. There is increased interest in designing bioactive peptides that can act as effective antimicrobial agents without causing harm to human cells. For this reason, it becomes relevant to understand how cholesterol can affect the interaction between bioactive peptides and lipid membranes, in particular by modulating the peptides' ability to penetrate and disrupt the membranes through these changes in membrane rigidity. Here we discuss cholesterol and its role in modulating lipid bilayer properties and discuss recent evidence showing how cholesterol modulates bioactive peptides to different degrees.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509253/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-10-17DOI: 10.3390/membranes14100219
Kai Bittner, Nikolaos Margaritis, Falk Schulze-Küppers, Jörg Wolters, Ghaleb Natour
{"title":"Computational Fluid Dynamics Modelling of Hydrogen Production via Water Splitting in Oxygen Membrane Reactors.","authors":"Kai Bittner, Nikolaos Margaritis, Falk Schulze-Küppers, Jörg Wolters, Ghaleb Natour","doi":"10.3390/membranes14100219","DOIUrl":"https://doi.org/10.3390/membranes14100219","url":null,"abstract":"<p><p>The utilization of oxygen transport membranes enables the production of high-purity hydrogen by the thermal decomposition of water below 1000 °C. This process is based on a chemical potential gradient across the membrane, which is usually achieved by introducing a reducing gas. Computational fluid dynamics (CFD) can be used to model reactors based on this concept. In this study, a modelling approach for water splitting is presented in which oxygen transport through the membrane acts as the rate-determining process for the overall reaction. This transport step is implemented in the CFD simulation. Both gas compartments are modelled in the simulations. Hydrogen and methane are used as reducing gases. The model is validated using experimental data from the literature and compared with a simplified perfect mixing modelling approach. Although the main focus of this work is to propose an approach to implement the water splitting in CFD simulations, a simulation study was conducted to exemplify how CFD modelling can be utilized in design optimization. Simplified 2-dimensional and rotational symmetric reactor geometries were compared. This study shows that a parallel overflow of the membrane in an elongated reactor is advantageous, as this reduces the back diffusion of the reaction products, which increases the mean driving force for oxygen transport through the membrane.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-10-15DOI: 10.3390/membranes14100218
Ewa Olchowik-Grabarek, Szymon Sekowski, Iga Mierzwinska, Izabela Zukowska, Nodira Abdulladjanova, Vadim Shlyonsky, Maria Zamaraeva
{"title":"Cell Type-Specific Anti- and Pro-Oxidative Effects of <i>Punica granatum</i> L. Ellagitannins.","authors":"Ewa Olchowik-Grabarek, Szymon Sekowski, Iga Mierzwinska, Izabela Zukowska, Nodira Abdulladjanova, Vadim Shlyonsky, Maria Zamaraeva","doi":"10.3390/membranes14100218","DOIUrl":"https://doi.org/10.3390/membranes14100218","url":null,"abstract":"<p><p>Pomegranate and its by-products contain a broad spectrum of phytochemicals, such as flavonoids, phenolic acids and tannins, having pleiotropic preventive and prophylactic properties in health disorders related to oxidative stress and microbial contamination. Here, we examined the biological effects of a pomegranate peel ellagitannins-enriched (>90%) extract, PETE. In vitro studies revealed that PETE has a strong antiradical action towards synthetic radicals and biologically relevant ROS surpassing or comparable to that of Trolox. In cellular models, it showed concentration-dependent (25-100 µg/mL) yet opposing effects depending on the cell membrane type and exposure conditions. In erythrocytes, PETE protected membrane integrity in the presence of the strong oxidant HClO and restored reduced glutathione levels to up to 85% of the control value while having much weaker acute and long-term intrinsic effects. Such protection persisted even after the removal of the extract from cells, indicating strong membrane interaction. In HeLa cancer cells, and at concentrations lower than those used for red blood cells, PETE induced robust potentiation of ROS production and mitochondrial potential dissipation, leading to autophagy-like membrane morphology changes and cell death. In <i>S. aureus</i>, the growth arrest and bacterial death in the presence of PETE (with MIC = 31.25 µg/mL and MBC = 125 µg/mL, respectively) can be linked to the tripled ROS induction by the extract in the same concentration range. This study indicates a specificity of ROS production by the pomegranate extract depending on the type of cell, the concentration of the extract and the time of incubation. This specificity witnesses a strong potential of the extract components as candidates in antioxidant and pro-oxidant therapy.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient Removal of PFASs Using Photocatalysis, Membrane Separation and Photocatalytic Membrane Reactors.","authors":"Nonhle Siphelele Neliswa Mabaso, Charmaine Sesethu Tshangana, Adolph Anga Muleja","doi":"10.3390/membranes14100217","DOIUrl":"https://doi.org/10.3390/membranes14100217","url":null,"abstract":"<p><p>Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are persistent compounds characterized by stable C-F bonds giving them high thermal and chemical stability. Numerous studies have highlighted the presence of PFASs in the environment, surface waters and animals and humans. Exposure to these chemicals has been found to cause various health effects and has necessitated the need to develop methods to remove them from the environment. To date, the use of photocatalytic degradation and membrane separation to remove PFASs from water has been widely studied; however, these methods have drawbacks hindering them from being applied at full scale, including the recovery of the photocatalyst, uneven light distribution and membrane fouling. Therefore, to overcome some of these challenges, there has been research involving the coupling of photocatalysis and membrane separation to form photocatalytic membrane reactors which facilitate in the recovery of the photocatalyst, ensuring even light distribution and mitigating fouling. This review not only highlights recent advancements in the removal of PFASs using photocatalysis and membrane separation but also provides comprehensive information on the integration of photocatalysis and membrane separation to form photocatalytic membrane reactors. It emphasizes the performance of immobilized and slurry systems in PFAS removal while also addressing the associated challenges and offering recommendations for improvement. Factors influencing the performance of these methods will be comprehensively discussed, as well as the nanomaterials used for each technology. Additionally, knowledge gaps regarding the removal of PFASs using integrated photocatalytic membrane systems will be addressed, along with a comprehensive discussion on how these technologies can be applied in real-world applications.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-10-14DOI: 10.3390/membranes14100216
Nahyeon Lee, Yun-Ho Ahn, Jaheon Kim, Kiwon Eum
{"title":"Controlled Growth of ZIF-8 Membranes on GO-Coated α-Alumina Supports via ZnO Atomic Layer Deposition for Improved Gas Separation.","authors":"Nahyeon Lee, Yun-Ho Ahn, Jaheon Kim, Kiwon Eum","doi":"10.3390/membranes14100216","DOIUrl":"https://doi.org/10.3390/membranes14100216","url":null,"abstract":"<p><p>This study presents a novel approach for fabricating ZIF-8 membranes supported on α-alumina hollow fibers through the introduction of a graphene oxide (GO) gutter layer and the application of zinc oxide (ZnO) Atomic Layer Deposition (ALD). The method successfully addressed key challenges, including excessive precursor penetration and membrane thickness. The introduction of the GO layer and subsequent ZnO ALD treatment significantly reduced membrane thickness to approximately 300 nm and eliminated delamination issues between the GO layer and the alumina support. The optimized membranes demonstrated enhanced propylene permeance, with values approximately three times higher than those of membranes without GO, and achieved higher separation factors, indicating minimal inter-crystalline defects. Notably, the GO layer influenced the microstructure, leading to an increase in permeance with rising temperatures. These findings highlight the potential of this strategy for developing high-performance ZIF-8 membranes for gas separation applications.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-10-12DOI: 10.3390/membranes14100215
Ivan Mardešić, Zvonimir Boban, Marija Raguz
{"title":"Electroformation of Giant Unilamellar Vesicles from Damp Films in Conditions Involving High Cholesterol Contents, Charged Lipids, and Saline Solutions.","authors":"Ivan Mardešić, Zvonimir Boban, Marija Raguz","doi":"10.3390/membranes14100215","DOIUrl":"https://doi.org/10.3390/membranes14100215","url":null,"abstract":"<p><p>Giant unilamellar vesicles (GUVs) are frequently used as membrane models in studies of membrane properties. They are most often produced using the electroformation method. However, there are a number of parameters that can influence the success of the procedure. Some of the most common conditions that have been shown to have a negative effect on GUV electroformation are the presence of high cholesterol (Chol) concentrations, the use of mixtures containing charged lipids, and the solutions with an elevated ionic strength. High Chol concentrations are problematic for the traditional electroformation protocol as it involves the formation of a dry lipid film by complete evaporation of the organic solvent from the lipid mixture. During drying, anhydrous Chol crystals form. They are not involved in the formation of the lipid bilayer, resulting in a lower Chol concentration in the vesicle bilayer compared to the original lipid mixture. Motivated primarily by the issue of artifactual Chol demixing, we have modified the electroformation protocol by incorporating the techniques of rapid solvent exchange (RSE), ultrasonication, plasma cleaning, and spin-coating for reproducible production of GUVs from damp lipid films. Aside from decreasing Chol demixing, we have shown that the method can also be used to produce GUVs from lipid mixtures with charged lipids and in ionic solutions used as internal solutions. A high yield of GUVs was obtained for Chol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) samples with mixing ratios ranging from 0 to 2.5. We also succeeded in preparing GUVs from mixtures containing up to 60 mol% of the charged lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) and in NaCl solutions with low ionic strength (<25 mM).</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-10-07DOI: 10.3390/membranes14100213
Izabela Gortat, Jerzy J Chruściel, Joanna Marszałek, Renata Żyłła, Paweł Wawrzyniak
{"title":"The Efficiency of Polyester-Polysulfone Membranes, Coated with Crosslinked PVA Layers, in the Water Desalination by Pervaporation.","authors":"Izabela Gortat, Jerzy J Chruściel, Joanna Marszałek, Renata Żyłła, Paweł Wawrzyniak","doi":"10.3390/membranes14100213","DOIUrl":"https://doi.org/10.3390/membranes14100213","url":null,"abstract":"<p><p>Composite polymer membranes were obtained using the so-called dry phase inversion and were used for desalination of diluted saline water solutions by pervaporation (PV) method. The tests used a two-layer backing, porous, ultrafiltration commercial membrane (PS20), which consisted of a supporting polyester layer and an active polysulfone layer. The active layer of PV membranes was obtained in an aqueous environment, in the presence of a surfactant, by cross-linking a 5 wt.% aqueous solution of polyvinyl alcohol (PVA)-using various amounts of cross-linking substances: 50 wt.% aqueous solutions of glutaraldehyde (GA) or citric acid (CA) or a 40 wt.% aqueous solution of glyoxal. An ethylene glycol oligomer (PEG 200) was also used to prepare active layers on PV membranes. Witch its help a chemically cross-linked hydrogel with PVA and cross-linking reagents (CA or GA) was formed and used as an active layer. The manufactured PV membranes (PVA/PSf/PES) were used in the desalination of water with a salinity of 35‱, which corresponds to the average salinity of oceans. The pervaporation method was used to examine the efficiency (productivity and selectivity) of the desalination process. The PV was carried at a temperature of 60 °C and a feed flow rate of 60 dm<sup>3</sup>/h while the membrane area was 0.005 m<sup>2</sup>. The following characteristic parameters of the membranes were determined: thickness, hydrophilicity (based on contact angle measurements), density, degree of swelling and cross-linking density and compared with the analogous properties of the initial PS20 backing membrane. The physical microstructure of the cross-section of the membranes was analyzed using scanning electron microscopy (SEM) method.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509809/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MembranesPub Date : 2024-10-07DOI: 10.3390/membranes14100214
Qiushan Liu, Tong Zhou, Yuru Liu, Wenjun Wu, Yufei Wang, Guohan Liu, Na Wei, Guangshuo Yin, Jin Guo
{"title":"Typical Heterotrophic and Autotrophic Nitrogen Removal Process Coupled with Membrane Bioreactor: Comparison of Fouling Behavior and Characterization.","authors":"Qiushan Liu, Tong Zhou, Yuru Liu, Wenjun Wu, Yufei Wang, Guohan Liu, Na Wei, Guangshuo Yin, Jin Guo","doi":"10.3390/membranes14100214","DOIUrl":"https://doi.org/10.3390/membranes14100214","url":null,"abstract":"<p><p>There is limited research on the relationship between membrane fouling and microbial metabolites in the nitrogen removal process coupled with membrane bioreactors (MBRs). In this study, we compared anoxic-oxic (AO) and partial nitritation-anammox (PNA), which were selected as representative heterotrophic and autotrophic biological nitrogen removal-coupled MBR processes for their fouling behavior. At the same nitrogen loading rate of 100 mg/L and mixed liquor suspended solids (MLSS) concentration of 4000 mg/L, PNA-MBR exhibited more severe membrane fouling compared to AO-MBR, as evidenced by monitoring changes in transmembrane pressure (TMP). In the autotrophic nitrogen removal process, without added organic carbon, the supernatant of PNA-MBR had higher concentrations of protein, polysaccharides, and low-molecular-weight humic substances, leading to a rapid flux decline. Extracellular polymeric substances (EPS) extracted from suspended sludge and cake sludge in PNA-MBR also contributed to more severe membrane fouling than in AO-MBR. The EPS subfractions of PNA-MBR exhibited looser secondary structures in protein and stronger surface hydrophobicity, particularly in the cake sludge, which contained higher contents of humic substances with lower molecular weights. The higher abundances of <i>Candidatus</i> Brocadia and <i>Chloroflexi</i> in PNA-MBR could lead to the production of more hydrophobic organics and humic substances. Hydrophobic metabolism products as well as anammox bacteria were deposited on the hydrophobic membrane surface and formed serious fouling. Therefore, hydrophilic membrane modification is more urgently needed to mitigate membrane fouling when running PNA-MBR than AO-MBR.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509564/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}