Membranes最新文献

筛选
英文 中文
Thermodynamic Considerations on the Biophysical Interaction between Low-Energy Electromagnetic Fields and Biosystems. 低能量电磁场与生物系统之间的生物物理相互作用的热力学考虑。
IF 3.3 4区 工程技术
Membranes Pub Date : 2024-08-22 DOI: 10.3390/membranes14080179
Umberto Lucia, Giulia Grisolia
{"title":"Thermodynamic Considerations on the Biophysical Interaction between Low-Energy Electromagnetic Fields and Biosystems.","authors":"Umberto Lucia, Giulia Grisolia","doi":"10.3390/membranes14080179","DOIUrl":"10.3390/membranes14080179","url":null,"abstract":"<p><p>A general theory explaining how electromagnetic waves affect cells and biological systems has not been completely accepted yet; nevertheless, extremely low-frequency electromagnetic fields (ELF-EMFs) can interfere with and modify several molecular cellular processes. The therapeutic effect of EMFs has been investigated in several clinical conditions with promising results: in this context a better understanding of mechanisms by which ELF-EMF influences cellular events is necessary and it could lead to more extended and specific clinical applications in different pathological conditions. This paper develops a thermodynamic model to explain how ELF-EMF directly interferes with the cellular membrane, inducing a biological response related to a cellular energy conversion and modification of flows across cell membranes. Indeed, energy, irreversibly consumed by cellular metabolism, is converted into entropy variation. The proposed thermodynamic model views living systems as adaptative open systems, analysing the changes in energy and matter moving in and out of the cell.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355948/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis. 利用压力驱动膜技术去除废水和其他水流中的重金属:通过文献计量分析展望反渗透、纳滤、超滤和微滤的潜力。
IF 3.3 4区 工程技术
Membranes Pub Date : 2024-08-22 DOI: 10.3390/membranes14080180
Katherinne Castro, Ricardo Abejón
{"title":"Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis.","authors":"Katherinne Castro, Ricardo Abejón","doi":"10.3390/membranes14080180","DOIUrl":"10.3390/membranes14080180","url":null,"abstract":"<p><p>A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative attributes of the research in this field during the specified period. A total of 2205 documents were identified, and the corresponding analysis indicated an exponential growth in the number of publications over time. The contribution of the three most productive countries (China, India and USA) accounts for more than 47.1% of the total number of publications, with Chinese institutions appearing as the most productive ones. Environmental Science was the most frequent knowledge category (51.9% contribution), followed by Chemistry and Chemical Engineering. The relative frequency of the keywords and a complete bibliometric network analysis allowed the conclusion that the low-pressure technologies (microfiltration and ultrafiltration) have been more deeply investigated than the high-pressure technologies (nanofiltration and reverse osmosis). Although porous low-pressure membranes are not adequate for the removal of dissolved heavy metals in ionic forms, the incorporation of embedded adsorbents within the membrane structure and the use of auxiliary chemicals to form metallic complexes or micelles that can be retained by this type of membrane are promising approaches. High-pressure membranes can achieve rejection percentages above 90% (99% in the case of reverse osmosis), but they imply lower permeate productivity and higher costs due to the required pressure gradients.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355994/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance and Enhanced Efficiency Induced by Cold Plasma on SAPO-34 Membranes for CO2 and CH4 Mixtures. 冷等离子体在 SAPO-34 膜上诱导 CO2 和 CH4 混合物的性能和增效。
IF 3.3 4区 工程技术
Membranes Pub Date : 2024-08-20 DOI: 10.3390/membranes14080178
Fnu Gorky, Vashanti Storr, Grace Jones, Apolo Nambo, Jacek B Jasinski, Maria L Carreon
{"title":"Performance and Enhanced Efficiency Induced by Cold Plasma on SAPO-34 Membranes for CO<sub>2</sub> and CH<sub>4</sub> Mixtures.","authors":"Fnu Gorky, Vashanti Storr, Grace Jones, Apolo Nambo, Jacek B Jasinski, Maria L Carreon","doi":"10.3390/membranes14080178","DOIUrl":"10.3390/membranes14080178","url":null,"abstract":"<p><p>In this study, we investigate the influence of cold-plasma-induced enhanced performance and efficiency of SAPO-34 membranes in the separation of CO<sub>2</sub> and CH<sub>4</sub> mixtures. Placing the herein presented research in a broader context, we aim to address the question of whether cold plasma can significantly impact the membrane performance. We subjected SAPO-34 membranes to plasma mild disturbances and analyzed their performance in separating CO<sub>2</sub> and CH<sub>4</sub>. Our findings reveal a notable enhancement in membrane efficiency and sustained performance when exposed to cold plasma. The pulsed plasma separation displayed improved structural integrity, and the experimental results indicated that the linear structure of CO₂ facilitates the distortion of electron clouds in response to the electric field, a property known as polarizability, which aids in effective separation. Plausible mechanistic insight indicated that the intermolecular forces facilitated an integral role in SAPO-34 membranes exhibiting strong electrostatic interactions. In conclusion, our research highlights the potential of cold plasma as a promising technique for improving the performance of SAPO-34 membranes in gas mixtures at atmospheric pressures, providing valuable insights for optimizing membrane technology in carbon capture and gas separation applications.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability and Performance of Commercial Membranes in High-Temperature Organic Flow Batteries. 商用膜在高温有机液流电池中的稳定性和性能。
IF 3.3 4区 工程技术
Membranes Pub Date : 2024-08-15 DOI: 10.3390/membranes14080177
Chiari J Van Cauter, Yun Li, Sander Van Herck, Ivo F J Vankelecom
{"title":"Stability and Performance of Commercial Membranes in High-Temperature Organic Flow Batteries.","authors":"Chiari J Van Cauter, Yun Li, Sander Van Herck, Ivo F J Vankelecom","doi":"10.3390/membranes14080177","DOIUrl":"10.3390/membranes14080177","url":null,"abstract":"<p><p>Redox flow batteries (RFB) often operate at extreme pH conditions and may require cooling to prevent high temperatures. The stability of the battery membranes at these extreme pH-values at high temperatures is still largely unknown. In this paper, a systematic screening of the performance and stability of nine commercial membranes at pH 14 and pH ≤ 0 with temperatures up to 80 °C is conducted in an organic aqueous RFB. Swelling, area resistance, diffusion crossover, battery performance and membrane stability after 40-80 °C temperature treatment are shown, after which a recommendation is made for different user scenarios. The Aquivion E98-05 membrane performed best for both the Tiron/2,7-AQDS battery and the DHPS/Fe(CN)<sub>6</sub> battery at 40 mA/cm<sup>2</sup>, with stable results after 1 week of storage at 80 °C. At 80 mA/cm<sup>2</sup>, E-620-PE performed best in the DHPS/Fe(CN)<sub>6</sub> battery, while Sx-050DK performed best in the Tiron/2,7-AQDS battery.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized Sulfonated Poly(Ether Ether Ketone) Membranes for In-House Produced Small-Sized Vanadium Redox Flow Battery Set-Up. 用于自制小型钒氧化还原液流电池装置的优化磺化聚醚醚酮膜。
IF 3.3 4区 工程技术
Membranes Pub Date : 2024-08-14 DOI: 10.3390/membranes14080176
Antonino Rizzuti, Elena Dilonardo, Gennaro Cozzolino, Fabio Matera, Alessandra Carbone, Biagia Musio, Piero Mastrorilli
{"title":"Optimized Sulfonated Poly(Ether Ether Ketone) Membranes for In-House Produced Small-Sized Vanadium Redox Flow Battery Set-Up.","authors":"Antonino Rizzuti, Elena Dilonardo, Gennaro Cozzolino, Fabio Matera, Alessandra Carbone, Biagia Musio, Piero Mastrorilli","doi":"10.3390/membranes14080176","DOIUrl":"10.3390/membranes14080176","url":null,"abstract":"<p><p>The ionic exchange membranes represent a core component of redox flow batteries. Their features strongly affect the performance, durability, cost, and efficiency of these energy systems. Herein, the operating conditions of a lab-scale single-cell vanadium flow battery (VRFB) were optimized in terms of membrane physicochemical features and electrolyte composition, as a way to translate such conditions into a large-scale five-cell VRFB stack system. The effects of the sulfonation degree (SD) and the presence of a filler on the performances of sulfonated poly(ether ether ketone) (SPEEK) ion-selective membranes were investigated, using the commercial perfluorosulfonic-acid Nafion 115 membrane as a reference. Furthermore, the effect of a chloride-based electrolyte was evaluated by comparing it to the commonly used standard sulfuric acid electrolyte. Among the investigated membranes, the readily available SPEEK50-0 (SD = 50%; filler = 0%) resulted in it being permeable and selective to vanadium. Improved coulombic efficiency (93.4%) compared to that of Nafion 115 (88.9%) was achieved when SPEEK50-0, in combination with an optimized chloride-based electrolyte, was employed in a single-cell VRFB at a current density of 20 mA·cm<sup>-2</sup>. The optimized conditions were successfully applied for the construction of a five-cell VRFB stack system, exhibiting a satisfactory coulombic efficiency of 94.5%.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating the Mechanism of Electro-Adsorption on Electrically Conductive Ultrafiltration Membranes via Modified Poisson-Boltzmann Equation. 通过修正的泊松-波尔兹曼方程阐明导电超滤膜上的电吸附机理
IF 3.3 4区 工程技术
Membranes Pub Date : 2024-08-10 DOI: 10.3390/membranes14080175
Muhammad Usman, Shahrokh Vahedi, Sarah Glass, Volkan Filiz, Mathias Ernst
{"title":"Elucidating the Mechanism of Electro-Adsorption on Electrically Conductive Ultrafiltration Membranes via Modified Poisson-Boltzmann Equation.","authors":"Muhammad Usman, Shahrokh Vahedi, Sarah Glass, Volkan Filiz, Mathias Ernst","doi":"10.3390/membranes14080175","DOIUrl":"10.3390/membranes14080175","url":null,"abstract":"<p><p>Electrically conductive membranes (ECMs) were prepared by coating porous ethylenediamine-modified polyacrylonitrile (PAN-EDA) UF membranes with an ultrathin layer of platinum (Pt) nanoparticles through magnetron sputtering. These ECMs were used in electrofiltration to study the removal of brilliant blue dye from an aqueous solution under positive electrical potentials (0-2.5 V). Negative electrical potentials (-1.0--2.5 V) were also investigated to regenerate the membrane by desorbing the dye from the ECM surface. At +0 V, the EC PAN-EDA membrane adsorbed the dye due to its intrinsic positive charge. Application of -2.0 V resulted in a maximum of 39% desorption of the dye. A modified Poisson-Boltzmann (MPB) model showed that -2.0 V created a repulsive force within the first 24 nm of the membrane matrix, which had a minimal effect on dye ions adsorbed deeper within the membrane, thus limiting the electro-desorption efficiency to 39%. Moreover, increasing positive potentials from +0.5 V to +2.5 V led to increased dye electro-adsorption by 9.5 times, from 132 mg/m<sup>2</sup> to 1112 mg/m<sup>2</sup> at pH 8 (equivalent to the membrane's isoelectric point). The MBP simulations demonstrated that increasing electro-adsorption loadings are related to increasing attractive force, indicating electro-adsorption induced by attractive force is the dominant mechanism and the role of other mechanisms (e.g., electrochemical oxidation) is excluded. At pH 5, electro-adsorption further increased to 1390 mg/m<sup>2</sup>, likely due to the additional positive charge of the membrane (zeta potential = 9.2 mV) compared to pH 8. At pH 8, complete desorption of the dye from the ECM surface was achieved with a significant repulsive force at -2.0 V. However, as pH decreased from 8 to 5, the desorption efficiency decreased by 3.9% due to the membrane's positive charge. These findings help elucidate the mechanisms of electro-adsorption and desorption on ECMs using dye as a model for organic compounds like humic acids.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Treatment of Synthetic Wastewater Containing Polystyrene (PS) Nanoplastics by Membrane Bioreactor (MBR): Study of the Effects on Microbial Community and Membrane Fouling 利用膜生物反应器 (MBR) 处理含有聚苯乙烯 (PS) 纳米塑料的合成废水:研究对微生物群落和膜污垢的影响
IF 3.3 4区 工程技术
Membranes Pub Date : 2024-08-09 DOI: 10.3390/membranes14080174
Anamary Pompa-Pernía, S. Molina, Laura Cherta, Lorena Martínez-García, J. Landaburu-Aguirre
{"title":"Treatment of Synthetic Wastewater Containing Polystyrene (PS) Nanoplastics by Membrane Bioreactor (MBR): Study of the Effects on Microbial Community and Membrane Fouling","authors":"Anamary Pompa-Pernía, S. Molina, Laura Cherta, Lorena Martínez-García, J. Landaburu-Aguirre","doi":"10.3390/membranes14080174","DOIUrl":"https://doi.org/10.3390/membranes14080174","url":null,"abstract":"The persistent presence of micro- and nanoplastics (MNPs) in aquatic environments, particularly via effluents from wastewater treatment plants (WWTPs), poses significant ecological risks. This study investigated the removal efficiency of polystyrene nanoplastics (PS-NPs) using a lab-scale aerobic membrane bioreactor (aMBR) equipped with different membrane types: microfiltration (MF), commercial ultrafiltration (c-UF), and recycled ultrafiltration (r-UF) membranes. Performance was assessed using synthetic urban wastewater spiked with PS-NPs, focusing on membrane efficiency, fouling behavior, and microbial community shifts. All aMBR systems achieved high organic matter removal, exceeding a 97% COD reduction in both the control and PS-exposed reactors. While low concentrations of PS-NPs did not significantly impact the sludge settleability or soluble microbial products initially, a higher accumulation increased the carbohydrate concentrations, indicating a protective bacterial response. The microbial community composition also adapted over time under polystyrene stress. All membrane types exhibited substantial NP removal; however, the presence of nano-sized PS particles negatively affected the membrane performance, enhancing the fouling phenomena and increasing transmembrane pressure. Despite this, the r-UF membrane demonstrated comparable efficiency to c-UF, suggesting its potential for sustainable applications. Advanced characterization techniques including pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) were employed for NP detection and quantification.","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141924119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Temperature Water Electrolysis Properties of Membrane Electrode Assemblies with Nafion and Crosslinked Sulfonated Polyphenylsulfone Membranes by Using a Decal Method 采用贴花法研究含 Nafion 膜和交联磺化聚苯砜膜的膜电极组件的高温水电解特性
IF 3.3 4区 工程技术
Membranes Pub Date : 2024-08-08 DOI: 10.3390/membranes14080173
Je-Deok Kim
{"title":"High-Temperature Water Electrolysis Properties of Membrane Electrode Assemblies with Nafion and Crosslinked Sulfonated Polyphenylsulfone Membranes by Using a Decal Method","authors":"Je-Deok Kim","doi":"10.3390/membranes14080173","DOIUrl":"https://doi.org/10.3390/membranes14080173","url":null,"abstract":"To improve the stability of high-temperature water electrolysis, I prepared membrane electrode assemblies (MEAs) using a decal method and investigated their water electrolysis properties. Nafion 115 and crosslinked sulfonated polyphenylsulfone (CSPPSU) membranes were used. IrO2 was used as the oxygen evolution reaction (OER) catalyst, and Pt/C was used as the hydrogen evolution reaction (HER) catalyst. The conductivity of the CSPPSU membrane at 80 °C and 90% RH (relative humidity) is about four times lower than that of the Nafion 115 membrane. Single-cell water electrolysis was performed while measuring the current density and performing electrochemical impedance spectroscopy (EIS) at cell temperatures from 80 to 150 °C and the stability of the current density over time at 120 °C and 1.7 V. The current density of water electrolysis using Nafion 115 and CSPPSU membranes at 150 °C and 2 V was 1.2 A/cm2 for both. The current density of the water electrolysis using the CSPPSU membrane at 120 °C and 1.7 V was stable for 40 h. The decal method improved the contact between the CSPPSU membrane and the catalyst electrode, and a stable current density was obtained.","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene Oxide Surface Modification of Reverse Osmosis (RO) Membrane via Langmuir-Blodgett Technique: Balancing Performance and Antifouling Properties. 通过 Langmuir-Blodgett 技术对反渗透膜(RO)进行氧化石墨烯表面改性:平衡性能与防污特性。
IF 3.3 4区 工程技术
Membranes Pub Date : 2024-08-07 DOI: 10.3390/membranes14080172
Dmitrii I Petukhov, James Weston, Rishat G Valeev, Daniel J Johnson
{"title":"Graphene Oxide Surface Modification of Reverse Osmosis (RO) Membrane via Langmuir-Blodgett Technique: Balancing Performance and Antifouling Properties.","authors":"Dmitrii I Petukhov, James Weston, Rishat G Valeev, Daniel J Johnson","doi":"10.3390/membranes14080172","DOIUrl":"10.3390/membranes14080172","url":null,"abstract":"<p><p>The reverse osmosis water treatment process is prone to fouling issues, prompting the exploration of various membrane modification techniques to address this challenge. The primary objective of this study was to develop a precise method for modifying the surface of reverse osmosis membranes to enhance their antifouling properties. The Langmuir-Blodgett technique was employed to transfer aminated graphene oxide films assembled at the air-liquid interface, under specific surface pressure conditions, to the polyamide surface with pre-activated carboxylic groups. The microstructure and distribution of graphene oxide along the modified membrane were characterized using SEM, AFM, and Raman mapping techniques. Modification carried out at the optimal surface pressure value improved the membrane hydrophilicity and reduced the surface roughness, thereby enhancing the antifouling properties against colloidal fouling. The flux recovery ratio after modification increased from 65% to 87%, maintaining high permeability. The modified membranes exhibited superior performance compared to the unmodified membranes during long-term fouling tests. This membrane modification technique can be easily scaled using the roll-to-roll approach and requires minimal consumption of the modifier used.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed-Matrix Organo-Silica-Hydrotalcite Membrane for CO2 Separation Part 1: Synthesis and Analytical Description. 用于分离二氧化碳的混合基质有机硅氢铝土膜第 1 部分:合成与分析说明。
IF 3.3 4区 工程技术
Membranes Pub Date : 2024-08-06 DOI: 10.3390/membranes14080170
Lucas Bünger, Krassimir Garbev, Angela Ullrich, Peter Stemmermann, Dieter Stapf
{"title":"Mixed-Matrix Organo-Silica-Hydrotalcite Membrane for CO<sub>2</sub> Separation Part 1: Synthesis and Analytical Description.","authors":"Lucas Bünger, Krassimir Garbev, Angela Ullrich, Peter Stemmermann, Dieter Stapf","doi":"10.3390/membranes14080170","DOIUrl":"10.3390/membranes14080170","url":null,"abstract":"<p><p>Hydrotalcite exhibits the capability to adsorb CO<sub>2</sub> at elevated temperatures. High surface area and favorable coating properties are essential to harness its potential for practical applications. Stable alcohol-based dispersions are needed for thin film applications of mixed membranes containing hydrotalcite. Currently, producing such dispersions without the need for delamination and dispersing agents is a challenging task. This work introduces, for the first time, a manufacturing approach to overcoming the drawbacks mentioned above. It includes a synthesis of hydrotalcite nanoparticles, followed by agent-free delamination of their layers and final dispersion into alcohol without dispersing agents. Further, the hydrotalcite-derived sorption agent is dispersed in a matrix based on organo-silica gels derived from 1,2-bis(triethoxysilyl)ethane (BTESE). The analytical results indicate that the interconnection between hydrotalcite and BTESE-derived gel occurs via forming a strong hydrogen bonding system between the interlayer species (OH groups, CO<sub>3</sub><sup>2-</sup>) of hydrotalcite and oxygen and silanol active gel centers. These findings lay the foundation for applications involving incorporating hydrotalcite-like compounds into silica matrices, ultimately enabling the development of materials with exceptional mass transfer properties. In part 2 of this study, the gas separation performance of the organo-silica and the hydrotalcite-like materials and their combined form will be investigated.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356514/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信