Membranes最新文献

筛选
英文 中文
A New Approach for Bioremediation of Olive Mill Wastewaters: Combination of Straw Filtration and Nanofiltration. 橄榄油厂废水生物修复的新方法:秸秆过滤与纳滤的结合。
IF 4.2 4区 工程技术
Membranes Pub Date : 2024-01-31 DOI: 10.3390/membranes14020038
Francesco Chidichimo, Maria Rita Basile, Carmela Conidi, Giovanni De Filpo, Rosanna Morelli, Alfredo Cassano
{"title":"A New Approach for Bioremediation of Olive Mill Wastewaters: Combination of Straw Filtration and Nanofiltration.","authors":"Francesco Chidichimo, Maria Rita Basile, Carmela Conidi, Giovanni De Filpo, Rosanna Morelli, Alfredo Cassano","doi":"10.3390/membranes14020038","DOIUrl":"10.3390/membranes14020038","url":null,"abstract":"<p><p>A combination of straw filtration and nanofiltration was investigated for the first time as a sustainable approach aimed at valorizing olive mill wastewaters (OMWs) within a circular economy strategy. Ground straw filters with different granulometry (120, 250 and 500 μm) were tested in the first step to clarify the raw wastewater. The 500 μm filter offered the best performance due to a lower exposed surface of the filtering fibers and a shorter filtering time, allowing us to reduce about 70% of the chemical oxygen demand (COD) of the raw wastewater. Three different commercial membranes in a flat-sheet configuration with a molecular weight cut-off (MWCO) in the range 150-500 Da were tested to fractionate the clarified wastewater according to a dead-end configuration. Among the investigated membranes, a polymeric membrane of 500 Da (NFA-12A) exhibited the highest productivity in selected operating conditions (steady-state values of 11.4 L/m<sup>2</sup> h at 20 bar and 24 ± 2 °C). In addition, flux decays for this membrane were lower than the other two tested membranes, indicating a lower propensity to fouling phenomena. Higher rejections towards total polyphenols and total antioxidant activity (TAA) (76.6% and 73.2%, respectively) were also observed for this membrane. Flavanols and hydroxycinnamic acids were retained by more than 99%. The combination of straw filtration and NF with the NFA-12A membrane allowed us to reduce the COD of raw OMWs up to 97.6%. The retentate fraction of this membrane exhibited a TAA of 18.9 ± 0.7 mM Trolox, supporting its propensity for the development of innovative formulations of interest in food and nutraceutical applications.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139931854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antimicrobial Activity of Polycaprolactone Nanofiber Coated with Lavender and Neem Oil Nanoemulsions against Airborne Bacteria. 涂有薰衣草和印度楝树油纳米乳液的聚己内酯纳米纤维对空气传播细菌的抗菌活性
IF 4.2 4区 工程技术
Membranes Pub Date : 2024-01-29 DOI: 10.3390/membranes14020036
Md Mahfuzur Rahman, Hari Kotturi, Sadegh Nikfarjam, Kanika Bhargava, Nagib Ahsan, Morshed Khandaker
{"title":"Antimicrobial Activity of Polycaprolactone Nanofiber Coated with Lavender and Neem Oil Nanoemulsions against Airborne Bacteria.","authors":"Md Mahfuzur Rahman, Hari Kotturi, Sadegh Nikfarjam, Kanika Bhargava, Nagib Ahsan, Morshed Khandaker","doi":"10.3390/membranes14020036","DOIUrl":"10.3390/membranes14020036","url":null,"abstract":"<p><p>The development of efficient, eco-friendly antimicrobial agents for air purification and disinfection addresses public health issues connected to preventing airborne pathogens. Herein, the antimicrobial activity of a nanoemulsion (control, 5%, 10%, and 15%) containing neem and lavender oils with polycaprolactone (PCL) was investigated against airborne bacteria, including <i>Escherichia coli</i>, <i>Bacillus subtilis</i>, and <i>Staphylococcus aureus</i>. Various parameters such as the physicochemical properties of the nanoemulsion, pH, droplet size, the polydispersity index (PDI), the minimum inhibitory concentration (MIC), the minimum bacterial concentration (MBC), and the color measurement of the emulsion have been evaluated and optimized. Our results showed that the antimicrobial activity of PCL combined with neem and lavender oil was found to be the highest MIC and MBC against all tested bacteria. The droplet sizes for lavender oil are 21.86-115.15 nm, the droplet sizes for neem oil are 23.92-119.15 nm, and their combination is 25.97-50.22 nm. The range of pH and viscosity of nanoemulsions of various concentrations was found to be 5.8 to 6.6 pH and 0.372 to 2.101 cP. This study highlights the potential of nanotechnology in harnessing the antimicrobial properties of natural essential oils, paving the way for innovative and sustainable solutions in the fight against bacterial contamination.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139931855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water, Protons, and the Gating of Voltage-Gated Potassium Channels. 水、质子和电压门控钾通道的门控。
IF 4.2 4区 工程技术
Membranes Pub Date : 2024-01-29 DOI: 10.3390/membranes14020037
Alisher M Kariev, Michael E Green
{"title":"Water, Protons, and the Gating of Voltage-Gated Potassium Channels.","authors":"Alisher M Kariev, Michael E Green","doi":"10.3390/membranes14020037","DOIUrl":"10.3390/membranes14020037","url":null,"abstract":"<p><p>Ion channels are ubiquitous throughout all forms of life. Potassium channels are even found in viruses. Every cell must communicate with its surroundings, so all cells have them, and excitable cells, in particular, especially nerve cells, depend on the behavior of these channels. Every channel must be open at the appropriate time, and only then, so that each channel opens in response to the stimulus that tells that channel to open. One set of channels, including those in nerve cells, responds to voltage. There is a standard model for the gating of these channels that has a section of the protein moving in response to the voltage. However, there is evidence that protons are moving, rather than protein. Water is critical as part of the gating process, although it is hard to see how this works in the standard model. Here, we review the extensive evidence of the importance of the role of water and protons in gating these channels. Our principal example, but by no means the only example, will be the K<sub>v</sub>1.2 channel. Evidence comes from the effects of D<sub>2</sub>O, from mutations in the voltage sensing domain, as well as in the linker between that domain and the gate, and at the gate itself. There is additional evidence from computations, especially quantum calculations. Structural evidence comes from X-ray studies. The hydration of ions is critical in the transfer of ions in constricted spaces, such as the gate region and the pore of a channel; we will see how the structure of the hydrated ion fits with the structure of the channel. In addition, there is macroscopic evidence from osmotic experiments and streaming current measurements. The combined evidence is discussed in the context of a model that emphasizes the role of protons and water in gating these channels.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139931858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-Stable Inorganic Mesoporous Membranes for Water Purification. 用于水净化的超稳定无机介孔膜。
IF 4.2 4区 工程技术
Membranes Pub Date : 2024-01-27 DOI: 10.3390/membranes14020034
Ralph A Bauer, Minghui Qiu, Melissa C Schillo-Armstrong, Matthew T Snider, Zi Yang, Yi Zhou, Hendrik Verweij
{"title":"Ultra-Stable Inorganic Mesoporous Membranes for Water Purification.","authors":"Ralph A Bauer, Minghui Qiu, Melissa C Schillo-Armstrong, Matthew T Snider, Zi Yang, Yi Zhou, Hendrik Verweij","doi":"10.3390/membranes14020034","DOIUrl":"10.3390/membranes14020034","url":null,"abstract":"<p><p>Thin, supported inorganic mesoporous membranes are used for the removal of salts, small molecules (PFAS, dyes, and polyanions) and particulate species (oil droplets) from aqueous sources with high flux and selectivity. Nanofiltration membranes can reject simple salts with 80-100% selectivity through a space charge mechanism. Rejection by size selectivity can be near 100% since the membranes can have a very narrow size distribution. Mesoporous membranes have received particular interest due to their (potential) stability under operational conditions and during defouling operations. More recently, membranes with extreme stability became interesting with the advent of in situ fouling mitigation by means of ultrasound emitted from within the membrane structure. For this reason, we explored the stability of available and new membranes with accelerated lifetime tests in aqueous solutions at various temperatures and pH values. Of the available ceria, titania, and magnetite membranes, none were actually stable under all test conditions. In earlier work, it was established that mesoporous alumina membranes have very poor stability. A new nanofiltration membrane was made of cubic zirconia membranes that exhibited near-perfect stability. A new ultrafiltration membrane was made of amorphous silica that was fully stable in ultrapure water at 80 °C. This work provides details of membrane synthesis, stability characterization and data and their interpretation.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139931857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Employing Atomic Force Microscopy (AFM) for Microscale Investigation of Interfaces and Interactions in Membrane Fouling Processes: New Perspectives and Prospects. 利用原子力显微镜(AFM)对膜结垢过程中的界面和相互作用进行微观研究:新视角与新前景》。
IF 4.2 4区 工程技术
Membranes Pub Date : 2024-01-27 DOI: 10.3390/membranes14020035
Mohan Wei, Yaozhong Zhang, Yifan Wang, Xiaoping Liu, Xiaoliang Li, Xing Zheng
{"title":"Employing Atomic Force Microscopy (AFM) for Microscale Investigation of Interfaces and Interactions in Membrane Fouling Processes: New Perspectives and Prospects.","authors":"Mohan Wei, Yaozhong Zhang, Yifan Wang, Xiaoping Liu, Xiaoliang Li, Xing Zheng","doi":"10.3390/membranes14020035","DOIUrl":"10.3390/membranes14020035","url":null,"abstract":"<p><p>Membrane fouling presents a significant challenge in the treatment of wastewater. Several detection methods have been used to interpret membrane fouling processes. Compared with other analysis and detection methods, atomic force microscopy (AFM) is widely used because of its advantages in liquid-phase in situ 3D imaging, ability to measure interactive forces, and mild testing conditions. Although AFM has been widely used in the study of membrane fouling, the current literature has not fully explored its potential. This review aims to uncover and provide a new perspective on the application of AFM technology in future studies on membrane fouling. Initially, a rigorous review was conducted on the morphology, roughness, and interaction forces of AFM in situ characterization of membranes and foulants. Then, the application of AFM in the process of changing membrane fouling factors was reviewed based on its in situ measurement capability, and it was found that changes in ionic conditions, pH, voltage, and even time can cause changes in membrane fouling morphology and forces. Existing membrane fouling models are then discussed, and the role of AFM in predicting and testing these models is presented. Finally, the potential of the improved AFM techniques to be applied in the field of membrane fouling has been underestimated. In this paper, we have fully elucidated the potentials of the improved AFM techniques to be applied in the process of membrane fouling, and we have presented the current challenges and the directions for the future development in an attempt to provide new insights into this field.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139931856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bovine Serum Albumin Rejection by an Open Ultrafiltration Membrane: Characterization and Modeling. 开放式超滤膜对牛血清白蛋白的排斥:表征与建模
IF 4.2 4区 工程技术
Membranes Pub Date : 2024-01-21 DOI: 10.3390/membranes14010026
Eric Suryawirawan, Anja E M Janssen, Remko M Boom, Albert van der Padt
{"title":"Bovine Serum Albumin Rejection by an Open Ultrafiltration Membrane: Characterization and Modeling.","authors":"Eric Suryawirawan, Anja E M Janssen, Remko M Boom, Albert van der Padt","doi":"10.3390/membranes14010026","DOIUrl":"10.3390/membranes14010026","url":null,"abstract":"<p><p>The classic application of ultrafiltration (UF) is for the complete retention of proteins, and in that situation, the transport behavior is well established. More open membranes with fractional retention are used when separating different proteins. However, protein transport has not been well documented yet in the literature. The bovine serum albumin (∼69 kDa) observed rejection ranges from 0.65 to 1 using a 300 kDa molecular weight cut-off membrane at different pH, ionic strength, and pressure. We demonstrated that, especially with open UF, the transport of proteins through the membrane is dominated by advection, with insignificant diffusion effects (<i>p</i> value > 0.05). We showed that with open UF, retention is not only caused by size exclusion but also to a large extent by electrostatic interactions and oligomerization of the proteins. Mass transfer in the polarization layer was relatively independent of the pH and ionic strength. It was underestimated by common Sherwood relations due to a relatively large contribution of the reduction in the flow turbulence near the membrane by the removal of fluid through the membrane. We propose a model that allows relatively quick characterization of the rejection of proteins without prior knowledge of the pore sizes and charges based on just a limited set of experiments. Therefore, protein rejection with the open UF system can be targeted by tuning the processing conditions, which might be useful for designing protein fractionation processes.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139564371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of Hybrid Membrane Distillation Systems. 混合膜蒸馏系统综述。
IF 3.3 4区 工程技术
Membranes Pub Date : 2024-01-18 DOI: 10.3390/membranes14010025
Heng Zhang, Haizhen Xian
{"title":"Review of Hybrid Membrane Distillation Systems.","authors":"Heng Zhang, Haizhen Xian","doi":"10.3390/membranes14010025","DOIUrl":"10.3390/membranes14010025","url":null,"abstract":"<p><p>Membrane distillation (MD) is an attractive separation process that can work with heat sources with low temperature differences and is less sensitive to concentration polarization and membrane fouling than other pressure-driven membrane separation processes, thus allowing it to use low-grade thermal energy, which is helpful to decrease the consumption of energy, treat concentrated solutions, and improve water recovery rate. This paper provides a review of the integration of MD with waste heat and renewable energy, such as solar radiation, salt-gradient solar ponds, and geothermal energy, for desalination. In addition, MD hybrids with pressure-retarded osmosis (PRO), multi-effect distillation (MED), reverse osmosis (RO), crystallization, forward osmosis (FO), and bioreactors to dispose of concentrated solutions are also comprehensively summarized. A critical analysis of the hybrid MD systems will be helpful for the research and development of MD technology and will promote its application. Eventually, a possible research direction for MD is suggested.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Synthesis of Cation Exchange Membranes: A Review. 阳离子交换膜的绿色合成:综述。
IF 4.2 4区 工程技术
Membranes Pub Date : 2024-01-17 DOI: 10.3390/membranes14010023
Stef Depuydt, Bart Van der Bruggen
{"title":"Green Synthesis of Cation Exchange Membranes: A Review.","authors":"Stef Depuydt, Bart Van der Bruggen","doi":"10.3390/membranes14010023","DOIUrl":"10.3390/membranes14010023","url":null,"abstract":"<p><p>Cation exchange membranes (CEMs) play a significant role in the transition to a more sustainable/green society. They are important components for applications such as water electrolysis, artificial photosynthesis, electrodialysis and fuel cells. Their synthesis, however, is far from being sustainable, affecting safety, health and the environment. This review discusses and evaluates the possibilities of synthesizing CEMs that are more sustainable and green. First, the concepts of green and sustainable chemistry are discussed. Subsequently, this review discusses the fabrication of conventional perfluorinated CEMs and how they violate the green/sustainability principles, eventually leading to environmental and health incidents. Furthermore, the synthesis of green CEMs is presented by dividing the synthesis into three parts: sulfonation, material selection and solvent selection. Innovations in using gaseous SO3 or gas-liquid interfacial plasma technology can make the sulfonation process more sustainable. Regarding the selection of polymers, chitosan, cellulose, polylactic acid, alginate, carrageenan and cellulose are promising alternatives to fossil fuel-based polymers. Finally, water is the most sustainable solvent and many biopolymers are soluble in it. For other polymers, there are a limited number of studies using green solvents. Promising solvents are found back in other membrane, such as dimethyl sulfoxide, Cyrene™, Rhodiasolv<sup>®</sup> PolarClean, TamiSolve NxG and γ-valerolactone.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10819081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Application of Membrane Separation Technology in the Pharmaceutical Industry. 膜分离技术在制药业中的应用。
IF 3.3 4区 工程技术
Membranes Pub Date : 2024-01-17 DOI: 10.3390/membranes14010024
Ruirui Ma, Juan Li, Ping Zeng, Liang Duan, Jimin Dong, Yunxia Ma, Lingkong Yang
{"title":"The Application of Membrane Separation Technology in the Pharmaceutical Industry.","authors":"Ruirui Ma, Juan Li, Ping Zeng, Liang Duan, Jimin Dong, Yunxia Ma, Lingkong Yang","doi":"10.3390/membranes14010024","DOIUrl":"10.3390/membranes14010024","url":null,"abstract":"<p><p>With the advancement in membrane technology, membrane separation technology has been found increasingly widespread applications in the pharmaceutical industry. It is utilized in drug separation and purification, wastewater treatment, and the recycling of wastewater resources. This study summarizes the application history of membrane technology in the pharmaceutical industry, presents practical engineering examples of its applications, analyzes the various types of membrane technologies employed in the pharmaceutical sector, and finally, highlights the application cases of renowned international and Chinese membrane technology companies in the pharmaceutical field.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10818260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Long-Term Sodium Hypochlorite Cleaning on Silicon Carbide Ultrafiltration Membranes Prepared via Low-Pressure Chemical Vapor Deposition. 次氯酸钠长期清洗对低压化学气相沉积制备的碳化硅超滤膜的影响
IF 4.2 4区 工程技术
Membranes Pub Date : 2024-01-15 DOI: 10.3390/membranes14010022
Asif Jan, Mingliang Chen, Michiel Nijboer, Mieke W J Luiten-Olieman, Luuk C Rietveld, Sebastiaan G J Heijman
{"title":"Effect of Long-Term Sodium Hypochlorite Cleaning on Silicon Carbide Ultrafiltration Membranes Prepared via Low-Pressure Chemical Vapor Deposition.","authors":"Asif Jan, Mingliang Chen, Michiel Nijboer, Mieke W J Luiten-Olieman, Luuk C Rietveld, Sebastiaan G J Heijman","doi":"10.3390/membranes14010022","DOIUrl":"10.3390/membranes14010022","url":null,"abstract":"<p><p>Sodium hypochlorite (NaClO) is widely used for the chemical cleaning of fouled ultrafiltration (UF) membranes. Various studies performed on polymeric membranes demonstrate that long-term (>100 h) exposure to NaClO deteriorates the physicochemical properties of the membranes, leading to reduced performance and service life. However, the effect of NaClO cleaning on ceramic membranes, particularly the number of cleaning cycles they can undergo to alleviate irreversible fouling, remains poorly understood. Silicon carbide (SiC) membranes have garnered widespread attention for water and wastewater treatment, but their chemical stability in NaClO has not been studied. Low-pressure chemical vapor deposition (LP-CVD) provides a simple and economical route to prepare/modify ceramic membranes. As such, LP-CVD facilitates the preparation of SiC membranes: (a) in a single step; and (b) at much lower temperatures (700-900 °C) in comparison with sol-gel methods (ca. 2000 °C). In this work, SiC ultrafiltration (UF) membranes were prepared via LP-CVD at two different deposition temperatures and pressures. Subsequently, their chemical stability in NaClO was investigated over 200 h of aging. Afterward, the properties and performance of as-prepared SiC UF membranes were evaluated before and after aging to determine the optimal deposition conditions. Our results indicate that the SiC UF membrane prepared via LP-CVD at 860 °C and 100 mTorr exhibited excellent resistance to NaClO aging, while the membrane prepared at 750 °C and 600 mTorr significantly deteriorated. These findings not only highlight a novel preparation route for SiC membranes in a single step via LP-CVD, but also provide new insights about the careful selection of LP-CVD conditions for SiC membranes to ensure their long-term performance and robustness under harsh chemical cleaning conditions.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820315/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信