Changes in Tubular PVDF Membrane Performance During Initial Period of Pilot Plant Operation.

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Marek Gryta, Wirginia Tomczak
{"title":"Changes in Tubular PVDF Membrane Performance During Initial Period of Pilot Plant Operation.","authors":"Marek Gryta, Wirginia Tomczak","doi":"10.3390/membranes15040119","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrafiltration (UF) is increasingly used in the food industry and for wastewater treatment and water reuse. Knowledge of the membrane properties that stabilise during the initial period of module operation in an industrial plant is essential for design purposes. This paper presents the experimental tests carried out using a pilot plant with an industrial PCI B1 membrane module. The module was equipped with tubular FP100 (100 kDa) polyvinylidene fluoride (PVDF) membranes used to separate carwash wastewater. The effect of membrane compaction during the first few days of the process on changes in permeate flux and dextran (40-500 kDa) separation rate was investigated. The effect of fouling, membrane washing with P3 Ultrasill 11 solution (pH = 12) and maintenance with sodium metabisulfite solution on the stabilisation of the technological performance of the plant was determined.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028676/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15040119","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafiltration (UF) is increasingly used in the food industry and for wastewater treatment and water reuse. Knowledge of the membrane properties that stabilise during the initial period of module operation in an industrial plant is essential for design purposes. This paper presents the experimental tests carried out using a pilot plant with an industrial PCI B1 membrane module. The module was equipped with tubular FP100 (100 kDa) polyvinylidene fluoride (PVDF) membranes used to separate carwash wastewater. The effect of membrane compaction during the first few days of the process on changes in permeate flux and dextran (40-500 kDa) separation rate was investigated. The effect of fouling, membrane washing with P3 Ultrasill 11 solution (pH = 12) and maintenance with sodium metabisulfite solution on the stabilisation of the technological performance of the plant was determined.

中试装置运行初期管状PVDF膜性能的变化。
超滤技术在食品工业、废水处理和水回用方面的应用越来越广泛。了解在工业装置中模块运行初期稳定的膜特性对于设计目的至关重要。本文介绍了用工业PCI B1膜组件在中试装置上进行的实验测试。该模块配备了用于分离洗车废水的管状FP100 (100 kDa)聚偏氟乙烯(PVDF)膜。研究了前几天膜压实对渗透通量和葡聚糖(40-500 kDa)分离率的影响。研究了污垢、P3 Ultrasill 11溶液(pH = 12)洗膜和焦亚硫酸钠溶液维持对装置工艺性能稳定的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信