Juncheng Mao , Youping Yi , Shiquan Huang , Hailin He , Yunfan Fu , Jiaguo Tang
{"title":"Influence of forging pretreatments on microstructure evolution and surface roughness of Al 6061 alloy","authors":"Juncheng Mao , Youping Yi , Shiquan Huang , Hailin He , Yunfan Fu , Jiaguo Tang","doi":"10.1016/j.mtsust.2024.100959","DOIUrl":"10.1016/j.mtsust.2024.100959","url":null,"abstract":"<div><p>Achieving ultra-smooth surfaces is the goal of aluminum optical manufacturing. Under certain processing conditions, improving the microstructure of aluminum and understanding its relationship with surface roughness requires systematic study. The grain structure and various types of second-phase particles are of paramount importance. This study analyzed the microstructure of 6061 alloy after undergoing severe plastic deformation under various processing conditions followed by T6 homogenization heat treatment. Utilizing a white light interferometer, a comparative analysis of the surface roughness was conducted on specimens that underwent single-point diamond turning to achieve a mirror finish. The assessment of surface roughness on machined surfaces is solely based on white light interferometry. The analysis and discussion focus on the effects of phases (causing scratches and voids), the grains and grain boundaries. Experimental findings signify: the grain size, grain boundary and residual second phase can both influence the surface quality, the increase in deformation temperature and accumulated strain both facilitate the dissolution and fragmentation of the secondary phases. However, they also contribute to some extent to grain growth, resulting in a minimum secondary phase area fraction of 0.87% and grain sizes reaching 147.8 μm. Subsequent heat treatments, while effective in reducing the negative impact of the phases, reveal noticeable step-like structures affecting the quality of surface roughness, with the lowest obtained Ra value being 0.8 nm. A proposed pretreatment method in cleaner ingot processing with lower alloy element content addresses the trade-off between reducing phases and controlling grain growth, aiming to achieve improved surface roughness, promoting the application of polycrystalline aluminum alloys in the field of optics manufacturing.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100959"},"PeriodicalIF":7.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Utilization of sugarcane bagasse ash in binary, ternary, and quaternary blended cement concrete –A waste to Wealth approach","authors":"Shaik Subhani , Sk M. Subhani , A. Bahurudeen","doi":"10.1016/j.mtsust.2024.100954","DOIUrl":"10.1016/j.mtsust.2024.100954","url":null,"abstract":"<div><p>The rapid growth of infrastructure has led to a substantial increase in cement demand, resulting in high carbon emissions from cement production and contributing to global warming. Simultaneously, the disposal of sugarcane bagasse ash is rising, causing significant environmental pollution. Using bagasse ash as a partial substitute for cement in concrete presents a promising solution to both issues, by reducing cement usage and mitigating disposal problems. Currently existing studies focussed on the influence of usage of bagasse ash in binary blended concrete, however a comprehensive review on the utilization of bagasse ash in binary, ternary, and quaternary blended concrete is highly limited. Therefore, this study provides a systematic review of the synergistic use of bagasse ash with other potential supplementary materials to produce bagasse ash-based binary, ternary, and quaternary blended concrete. This study not only offers solution to global environmental challenges buts also promotes the use of alternative materials in concrete production worldwide. The study evaluates the fresh, mechanical, and durability properties of bagasse ash blended binary, ternary, and quaternary concretes. Results indicate that binary concrete with bagasse ash demonstrates a 10%–20% increase in compressive strength compared to reference concrete at an optimal replacement level of 20%. In ternary and quaternary blends, cement can be replaced by up to 40% without compromising strength. Notably, ternary blends incorporating bagasse ash with materials such as palm oil fuel ash or rice husk ash exhibit enhanced strength and durability properties. The addition of bagasse ash in binary, ternary, and quaternary blended concrete reduces workability of blended concretes but enhances resistance against chloride ion penetration, air permeability, and water permeability.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100954"},"PeriodicalIF":7.1,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revolutionizing cancer treatment: Enhancing photodynamic therapy with cyclodextrin nanoparticles and synergistic combination therapies","authors":"Jaya Lakkakula , Palak Kalra , Geetanjali Mallick , Hemant Mittal , Imran Uddin","doi":"10.1016/j.mtsust.2024.100958","DOIUrl":"10.1016/j.mtsust.2024.100958","url":null,"abstract":"<div><p>By combining the synergistic effects of a photosensitive substance, light activation, and molecular oxygen to stimulate selective tumor cell death, the utilization of photodynamic therapy (PDT) as a successful cancer therapy strategy is growing in popularity. On account of its unique properties, such as biological compatibility, cyclodextrin-based nanoparticles (NPs) have garnered significant attention in the field of PDT. A thorough synopsis of recent research on CD-based NPs utilized in anti-tumor PDT are explored in this review. Due to their enhanced light absorption and drug-loading capacities, these NPs have demonstrated great promise for increasing PDT results and drug delivery efficiency. In addition, the review explores studies that demonstrate the potential utility of CD NP complexes in conjunction with ions, graphene, carbon nanotubes, and porphyrin, with a focus on the synthesis, characteristics, and photophysical characteristics of each. The ability of CD-based NPs to encapsulate and promote the regulated release of hydrophobic photosensitizers (PS) within cancer cells is a significant topic covered in this review. The review also assesses the therapeutic benefits and synergistic effects that result from combining cyclodextrin with other substances. In the context of cancer prevention photodynamic therapy, this investigation highlights the versatility and promise of cyclodextrin-based NP systems.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100958"},"PeriodicalIF":7.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258923472400294X/pdfft?md5=8d8b9e805f15d61feb1ef6701e16bdaa&pid=1-s2.0-S258923472400294X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One-pot synthesis of tungsten oxynitride/nitrogen-doped graphene with particle-sheet hybrid nanostructure as a highly effective binder-free supercapacitor electrode","authors":"Narjess Sadat Kiafiroozkoohi , Shaban Reza Ghorbani , Hadi Arabi , Reza Ghanbari","doi":"10.1016/j.mtsust.2024.100956","DOIUrl":"10.1016/j.mtsust.2024.100956","url":null,"abstract":"<div><p>High-performance nanoscale composites have achieved predominance as promising materials for supercapacitor applications. Graphene nanosheets decorated with transition metal oxynitride nanoparticles can be highly beneficial in improving supercapacitor properties. However, they are hardly retrieved, and their electrochemical characterizations and inherent charge-storage mechanisms have not been deeply investigated. Herein, tungsten oxynitride decorated nitrogen-doped graphene (WON-NG) is synthesized by a facile one-pot strategy in a particle-sheet hybrid nanostructure. The nanocomposite is grown directly on a nickel foam (NF) as the current collector through the synthesis process. X-ray photoelectron spectroscopy and TEM images have confirmed the particle-sheet hybrid nanostructure of the prepared nanocomposite with tungsten oxynitride nanoparticles and nitrogen-doped graphene nanosheet. The oxygen and nitrogen-based redox groups, which synergistically coexist in the hybrid network, inherently cooperate in the electrochemical activities of the nanocomposite. The electrochemical measurements show that the WON-NG|NF electrode can deliver a superior specific capacitance of 1079.4 F g<sup>−1</sup> (4.6 F cm<sup>−2</sup>) at 1 A g<sup>−1</sup> in 1 M KOH aqueous electrolyte. In-depth investigations suggest that the diffusive-controlled process governs the charge storage mechanism at all scan rates in the composite for the advantageous porous morphology. The assembled all-solid-state asymmetric supercapacitor device exhibits a high energy density of 81.6 Wh kg<sup>−1</sup> and a power density of 5005.4 W kg<sup>−1</sup>. Also, the designed devise shows an excellent cycle life with 87.7% capacitance retention of 10,000 cycles.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100956"},"PeriodicalIF":7.1,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vito Gigante , Giuseppe Gallone , Laura Aliotta , Andrea Lazzeri
{"title":"Twin-screw extrusion optimization and study of morphological, thermal, mechanical and fracture properties of sustainable Poly(lactic acid) (PLA) and Poly(butylene sebacate) (PBSe) blends","authors":"Vito Gigante , Giuseppe Gallone , Laura Aliotta , Andrea Lazzeri","doi":"10.1016/j.mtsust.2024.100953","DOIUrl":"10.1016/j.mtsust.2024.100953","url":null,"abstract":"<div><p>The pursuit of sustainability in material science forces the utilization of bio-based and/or biodegradable alternatives to fossil-based plastics. With growing attention in recent years, particularly in applications like packaging and agriculture, biodegradable and bio-based polymers offer potential solutions to mitigate environmental concerns associated with plastic disposal. In this context, Poly(butylene sebacate) (PBSe), a commercially available biobased and biodegradable aliphatic polyester derived from sebacic acid and 1,4-butandiol, presents a promising innovation due to its flexibility, availability in the market and compatibility with poly(lactic acid) (PLA). Up to day few works investigated the addition of PBSe to PLA, for this reason the present work focuses on comprehensively characterizing PLA/PBSe blends (with different PBSe amounts from 10 up to 40 wt%). The blends have been produced through extrusion compounding after a careful Design of Experiment for optimizing process parameters to efficiently improve mixing and energy consumption. Thermal, mechanical, and morphological properties were evaluated, combined with micromechanical analysis employing dilatometric tests. Additionally, an elasto-plastic fracture mechanics protocol was applied to quantify toughness and energy absorption capabilities, demonstrating the potential of PLA/PBSe blends in sustainable material applications. In this work also emerged the great capacity of PBSe in acting as toughener for PLA especially when is present in low amount.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100953"},"PeriodicalIF":7.1,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589234724002896/pdfft?md5=7193506d532934659e872d30c4132c06&pid=1-s2.0-S2589234724002896-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dai Zhang , Zhenshuai Wang , Xingyang Bao , Ruoyu Hong , Xing Zhang , Jinjia Xu
{"title":"A green and low-cost approach to recover graphite for high-performance aluminum ion battery cathode","authors":"Dai Zhang , Zhenshuai Wang , Xingyang Bao , Ruoyu Hong , Xing Zhang , Jinjia Xu","doi":"10.1016/j.mtsust.2024.100957","DOIUrl":"10.1016/j.mtsust.2024.100957","url":null,"abstract":"<div><p>The recovery of spent graphite (SG) from lithium-ion batteries (LIBs) has been neglected due to its relatively low value and the lack of effective recovery methods. In this study, a green and cost-effective water washing process was used to recycle the spent graphite of LIBs anode, and the recovered graphite (RG) was used as the cathode material of aluminum ion batteries (AIBs). The RG retained the integrated graphite structure after the water washing process, showing a slightly enlarged interlayer spacing. When used as a cathode material for AIBs, it exhibits better electrochemical performance than commercial artificial graphite. At a current density of 50 mA g<sup>−1</sup>, the RG shows a high specific capacity of 95.2 mAh g<sup>−1</sup>. At a high current density of 2000 mA g<sup>−1</sup>, the specific capacity still maintains 51 mAh g<sup>−1</sup>, demonstrating excellent rate performance. Meanwhile, the average specific capacity of 72.5 mAh g<sup>−1</sup> was steadily cycled for 10,000 cycles at a current density of 1000 mA g<sup>−1</sup>, showing excellent cycle performance. This work provides a novel approach to the high-value-added application of spent graphite from lithium batteries and a development of high-performance graphite cathode materials for AIBs.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100957"},"PeriodicalIF":7.1,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solar brilliance unleashed: Maximizing performance of novel carbon-based Rb-doped CsSnI3 perovskite solar cells by gradient doping","authors":"Neetika Yadav , Ayush Khare , Manish Kumar","doi":"10.1016/j.mtsust.2024.100955","DOIUrl":"10.1016/j.mtsust.2024.100955","url":null,"abstract":"<div><p>The commercialization of state-of-the-art perovskite solar cells (PSCs) is hindered by lead toxicity, high production costs, and stability issues. The current study addresses these challenges by exploring lead-free Rb-doped CsSnI<sub>3</sub> perovskite with carbon-based materials. Herein, the impact of Rb-doping in CsSnI<sub>3</sub> perovskite has been thoroughly investigated on its structural, electrical, and optical properties via DFT studies. The results show that the incorporation of Rb-cation into CsSnI<sub>3</sub> significantly enhances the stability of the perovskite active layer (PAL), addressing the major challenge of degradation under environmental conditions. Further, DFT results are used to investigate the potential of Cs<sub>0.75</sub>Rb<sub>0.25</sub>SnI<sub>3</sub> as a PAL in device architecture FTO/ETL/Cs<sub>0.75</sub>Rb<sub>0.25</sub>SnI<sub>3</sub>/CNTs/C via SCAPS-1D with different electron transport layer (ETL) and carbon-based hole transport layer and back contact. Simulation results show that among different ETLs, WO<sub>3</sub> demonstrates the best performance. Further, we have employed a gradient doping (GD) strategy in PAL, dividing it into two sub-layers of thickness 200 nm each with different doping concentrations in the simulated device FTO/WO<sub>3</sub>/CsRbSnI<sub>3</sub>/CNTs/C. The aim of implementing GD is to strengthen the electric field and improve the energy band alignments which helps in reducing interfacial recombination. Besides, the impact of band-gap, interfacial defects, hysteresis effect, and C–V and C–F analysis are examined. The results reveal that at doping gradient G = 300, the device attains the best PCE of 19.05% with E<sub>g</sub> of 1.32 eV (PAL-1) and 1.22 eV (PAL-2). This study can serve as a benchmark for developing high-performance and low-cost CsRbSnI<sub>3</sub>-based PSCs utilizing a gradient doping strategy.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100955"},"PeriodicalIF":7.1,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbon-based metal-oxides and MOFs for efficient CO2 detection/reduction to chemical/fuels","authors":"Deepak Kumar , Pashupati Pratap Neelratan , Anshika Gupta , Neeru Sharma , Manisha Sharma , Sangeeta Shukla , Satendra Pal Singh , Jong-Sung Yu , Ajeet Kaushik , Sanjeev K. Sharma","doi":"10.1016/j.mtsust.2024.100952","DOIUrl":"10.1016/j.mtsust.2024.100952","url":null,"abstract":"<div><p>This article explores nanocarbons (NCs) decorated metal oxides (MOx) and metal-organic frameworks (MOFs) hybrid nanosystems for efficient CO<sub>2</sub> detection and conversion to energy for environment sustainability. NCs have emerged as promising low-cost sensing and catalytic materials for conversion, which are decorated MOx and MOFs to fabricate hybrid nanosystems. These systems are considered for the next generation of CO<sub>2</sub> detection and value-added products using photo/electro/biological catalytic processes. To cater to state-of-the-art knowledge and aspects, this article summarises the research progress of functional C-based MOx and MOF hybrid materials as effective platforms for desired absorption/adsorption of CO<sub>2</sub> and conversion technologies, which will be part of a circular economy. At the end of this article, limitations, challenges, and future perspectives of C-based materials are summarized to understand and implement the knowledge for advanced sensing devices and efficient reduction of fuel/chemical production. NCs-decorated MOx hybrid materials have shown the potential for highly selective and fast-responsive CO<sub>2</sub> detectors due to their high carrier rates, nominal working temperature, chemical compositions, morphologies, large specific surface area, and high mechanical strength. C-based nanomaterials, such as CNTs, C<sub>60</sub>, C-QDs, and Gr, might be considered for flexible sensors that enhance stability and limit of detection (LOD). MOFs are highly recommended for CO<sub>2</sub> detection and reduction through adsorption, owing to their interconnected linker arms, cage-like structure, and extensive internal surface area. This article contributes to the ongoing research on innovative materials and strategies for addressing global environmental challenges and energy sustainability through advanced sensing and conversion technologies.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100952"},"PeriodicalIF":7.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammed Sahal Siddique , N Awanis Hashim , Mohd Usman Mohd Junaidi , Aubaid Ullah , Rozita Yusoff , Mohamad Fairus Rabuni
{"title":"Recent advances in the application of dolomite in membrane separation and beyond: A review on an abundant and versatile mineral","authors":"Muhammed Sahal Siddique , N Awanis Hashim , Mohd Usman Mohd Junaidi , Aubaid Ullah , Rozita Yusoff , Mohamad Fairus Rabuni","doi":"10.1016/j.mtsust.2024.100951","DOIUrl":"10.1016/j.mtsust.2024.100951","url":null,"abstract":"<div><p>Dolomite is a cost-effective and abundant natural mineral which is characterized by its versatility, non-toxicity, and simple handling. This review analyzes the available scientific literature and delves into multiple dimensions of dolomite. It begins by exploring the origin, structure, and properties of dolomite along with its extraction and purification. This is followed by a critical analysis of its application in various traditional and emerging fields. The traditional areas discussed include agriculture, construction, glass manufacturing, and refractories, with a focus on recent advancements. Similarly, emerging areas of dolomite application include adsorption of heavy metals, polymer engineering (as a mineral filler), catalysis, and membrane separation. Greater emphasis has been placed on the application of dolomite in ceramic membranes, where its composites have been observed to have excellent chemical and mechanical properties, along with high porosity. This is in addition to dolomite being very effective in all the areas mentioned in the article, including as a fertilizer, transesterification and tar removal catalyst, mineral filler, and adsorbent. By underscoring the versatility and benefits of dolomite, this review article serves as an impetus for future research on its sustainable applications.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100951"},"PeriodicalIF":7.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recycling, thermophysical characterisation and assessment of low-density polythene waste as feedstock for 3D printing","authors":"Rajdeep Singh Devra , Nishkarsh Srivastava , Madhu Vadali , Amit Arora","doi":"10.1016/j.mtsust.2024.100949","DOIUrl":"10.1016/j.mtsust.2024.100949","url":null,"abstract":"<div><p>Low-density polyethene (LDPE) is extensively used in single-end-use food packaging and contributes significantly to global waste plastic. This study addresses this challenge by introducing a sustainable approach to reclaim and valorise waste LDPE from milk packaging by converting them into 3D printing filaments. The process involves extruding shredded LDPE pouches into continuous filaments using a modified thermal extruder. The research comprehensively investigates the effects of two key extrusion parameters, nozzle temperature and screw speed, on the resulting filament's physical and mechanical properties. Characterisation efforts include dimensional analysis, morphological evaluation, chemical integrity assessment, thermal stability analysis, and tensile testing. The results show that filaments remain consistently close to 1.75 mm diameter, which is required by most commercial FDM 3D printers. The filaments are chemically intact, thermally stable, and have high toughness across the range of extrusion parameters. The results and a preliminary demonstration of 3D printing indicate that the LDPE waste can be effectively transformed into consistent filaments that have the potential for 3D printing. A carbon footprint assessment underscores the environmental benefits of this approach, showing substantial reductions in estimated CO<sub>2</sub> emissions compared to conventional filament production methods. While challenges related to the quality of printed parts remain, the research opens avenues for optimizing 3D printing parameters and exploring multiple recycling cycles. This work represents a step towards sustainable plastic waste management and offers insights into transforming single-use plastic items into valuable resources.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100949"},"PeriodicalIF":7.1,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}