Changming Li , Huilin Liu , Xiaoxiong Chai , Dongyang Jia , Yaozong Wang , Hui Liu , Xudong Yang , Guanfeng Liu , Wanjiao Li
{"title":"改性沉积土工聚合物材料的耐腐蚀性和微观结构研究","authors":"Changming Li , Huilin Liu , Xiaoxiong Chai , Dongyang Jia , Yaozong Wang , Hui Liu , Xudong Yang , Guanfeng Liu , Wanjiao Li","doi":"10.1016/j.mtsust.2024.101048","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing sediment to manufacture geopolymer materials by alkali-activated modification is an eco-friendly and economical strategy. Investigating its corrosion resistance properties is crucial for enhancing the durability and structural stability of the materials and is the key to promoting their widespread application. In this paper, the combined effects of modifiers, mineral admixtures, and corrosion conditions on the corrosion resistance, mechanical strength, and microstructure of modified sediment geopolymer materials were thoroughly investigated. The mechanical properties of materials were evaluated by universal press, and the mineral composition and microstructure of the materials were analyzed by XRD, SEM and TG. The results reveal that the strength of the modified sediment material are significantly improved. The highest compressive strength of the modified sediment samples reached 15.84 MPa, which was much higher than that of the modified sediment samples without additives. The optimum softening coefficient of the sample is 0.79, and its water resistance is exceptional. The highest compressive strength reaches 15.04 MPa and 14.43 MPa respectively in acid and alkali environment, and its corrosion resistance is better than that of sediment materials without additives. The microstructure analyzed clearly indicated that the C–S–H gels, as the main hydration products, effectively promoted the close bonding of the sediment particles and filled the pores and microcracks inside the specimens, which significantly enhanced the strength and corrosion resistance of the material.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"29 ","pages":"Article 101048"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on corrosion resistance and microstructure of modified sediment geopolymer materials\",\"authors\":\"Changming Li , Huilin Liu , Xiaoxiong Chai , Dongyang Jia , Yaozong Wang , Hui Liu , Xudong Yang , Guanfeng Liu , Wanjiao Li\",\"doi\":\"10.1016/j.mtsust.2024.101048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Utilizing sediment to manufacture geopolymer materials by alkali-activated modification is an eco-friendly and economical strategy. Investigating its corrosion resistance properties is crucial for enhancing the durability and structural stability of the materials and is the key to promoting their widespread application. In this paper, the combined effects of modifiers, mineral admixtures, and corrosion conditions on the corrosion resistance, mechanical strength, and microstructure of modified sediment geopolymer materials were thoroughly investigated. The mechanical properties of materials were evaluated by universal press, and the mineral composition and microstructure of the materials were analyzed by XRD, SEM and TG. The results reveal that the strength of the modified sediment material are significantly improved. The highest compressive strength of the modified sediment samples reached 15.84 MPa, which was much higher than that of the modified sediment samples without additives. The optimum softening coefficient of the sample is 0.79, and its water resistance is exceptional. The highest compressive strength reaches 15.04 MPa and 14.43 MPa respectively in acid and alkali environment, and its corrosion resistance is better than that of sediment materials without additives. The microstructure analyzed clearly indicated that the C–S–H gels, as the main hydration products, effectively promoted the close bonding of the sediment particles and filled the pores and microcracks inside the specimens, which significantly enhanced the strength and corrosion resistance of the material.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"29 \",\"pages\":\"Article 101048\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234724003841\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003841","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Study on corrosion resistance and microstructure of modified sediment geopolymer materials
Utilizing sediment to manufacture geopolymer materials by alkali-activated modification is an eco-friendly and economical strategy. Investigating its corrosion resistance properties is crucial for enhancing the durability and structural stability of the materials and is the key to promoting their widespread application. In this paper, the combined effects of modifiers, mineral admixtures, and corrosion conditions on the corrosion resistance, mechanical strength, and microstructure of modified sediment geopolymer materials were thoroughly investigated. The mechanical properties of materials were evaluated by universal press, and the mineral composition and microstructure of the materials were analyzed by XRD, SEM and TG. The results reveal that the strength of the modified sediment material are significantly improved. The highest compressive strength of the modified sediment samples reached 15.84 MPa, which was much higher than that of the modified sediment samples without additives. The optimum softening coefficient of the sample is 0.79, and its water resistance is exceptional. The highest compressive strength reaches 15.04 MPa and 14.43 MPa respectively in acid and alkali environment, and its corrosion resistance is better than that of sediment materials without additives. The microstructure analyzed clearly indicated that the C–S–H gels, as the main hydration products, effectively promoted the close bonding of the sediment particles and filled the pores and microcracks inside the specimens, which significantly enhanced the strength and corrosion resistance of the material.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.