{"title":"Immuno-epidemiological model-based prediction of further COVID-19 epidemic outbreaks due to immunity waning","authors":"Samiran Ghosh, M. Banerjee, V. Volpert","doi":"10.1051/mmnp/2022017","DOIUrl":"https://doi.org/10.1051/mmnp/2022017","url":null,"abstract":"We develop a new data-driven immuno-epidemiological model with distributed infectivity, recovery and death rates determined from the epidemiological, clinical and experimental data. Immunity in the population is taken into account through the time-dependent number of vaccinated people with different numbers of doses and through the acquired immunity for recovered individuals. The model is validated with the available data. We show that for the first time from the beginning of pandemic COVID-19 some countries reached collective immunity. However, the epidemic continues because of the emergence of new variant BA.2 with a larger immunity escape or disease transmission rate than the previous BA.1 variant. Large epidemic outbreaks can be expected several months later due to immunity waning. These outbreaks can be restrained by an intensive booster vaccination.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42895290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alejandro BANDERA MORENO, Macarena Gómez-Mármol, S. Fernández-García, A. Vidal
{"title":"A MULTIPLE TIMESCALE NETWORK MODEL OF INTRACELLULAR\u0000CALCIUM CONCENTRATIONS IN COUPLED NEURONS: INSIGHTS FROM\u0000ROM SIMULATIONS.","authors":"Alejandro BANDERA MORENO, Macarena Gómez-Mármol, S. Fernández-García, A. Vidal","doi":"10.1051/mmnp/2022016","DOIUrl":"https://doi.org/10.1051/mmnp/2022016","url":null,"abstract":"In [16], the authors analyzed the synchronization features between two identical 3D slow-fast oscillators, symmetrically coupled, built as an extension of the FitzHugh–Nagumo dynamics generating Mixed-Mode Oscillations. The third variable, which is slow, represents the intracellular calcium concentration in neurons. Here, we consider an extension of this model in two directions. First, we consider heterogeneity among cells and analyze the coupling of two oscillators with different values for one parameter tuning the intrinsic frequency. We identify new patterns of antiphasic synchronization, with non-trivial signatures and that exhibit a Devil’s Staircase phenomenon in transitions. Second, we introduce a network of N cells divided into two clusters: the coupling between neurons in each cluster is excitatory, while between the two clusters is inhibitory. Such system models the interactions between neurons tending to synchronization in two subpopulations inhibiting each other, like ipsi- and contra-lateral motoneurons assemblies. To perform the numerical simulations when N is large, as an initial step towards the network analysis, we consider Reduced Order Models to save computational costs. We present the numerical reduction results in a network of 100 cells. To validate the numerical reduction method, we compare the outputs and CPU times obtained in different cases.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41945418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}