S. S. Chaharborj, Jalal Hassanzadeh Asl, Babak Mohammadi
{"title":"Optimal Control Strategy to Control Pandemic COVID-19 Using MSI_LI_HR_V Model","authors":"S. S. Chaharborj, Jalal Hassanzadeh Asl, Babak Mohammadi","doi":"10.1051/mmnp/2022015","DOIUrl":null,"url":null,"abstract":"Many researchers began doing studies about pandemic COVID-19 which began to spread from Wuhan, China in 2019 to all around the world and so far, numerous researches have been done around the world to control this contagious disease. In this paper, we proposed mathematical model to study the spreading of pandemic COVID-19. This paper is aimed to study the vaccination effect in the control of the disease propagation rate. Another goal of this paper is to find the maximum number of susceptible people, minimum number of infected people, and the best value for number of vaccination people. The Jacobin matrix was obtained in the virus absenteeism equilibrium point for the proposed dynamical system. The spectral radius method was applied to find the analytical formula for the reproductive number. Reproductive number is one of the most benefit and important tools to study of epidemic model’s stability and unstability. In the following, by adding a controller to the model and also using the optimal control strategy, model performance was improved. To validate of the proposed models with controller and without controller we use the real data of Covid-19 from 4 Jan, 2021 up to 14 June, 2021 in Iran.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2022015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many researchers began doing studies about pandemic COVID-19 which began to spread from Wuhan, China in 2019 to all around the world and so far, numerous researches have been done around the world to control this contagious disease. In this paper, we proposed mathematical model to study the spreading of pandemic COVID-19. This paper is aimed to study the vaccination effect in the control of the disease propagation rate. Another goal of this paper is to find the maximum number of susceptible people, minimum number of infected people, and the best value for number of vaccination people. The Jacobin matrix was obtained in the virus absenteeism equilibrium point for the proposed dynamical system. The spectral radius method was applied to find the analytical formula for the reproductive number. Reproductive number is one of the most benefit and important tools to study of epidemic model’s stability and unstability. In the following, by adding a controller to the model and also using the optimal control strategy, model performance was improved. To validate of the proposed models with controller and without controller we use the real data of Covid-19 from 4 Jan, 2021 up to 14 June, 2021 in Iran.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.