{"title":"Immuno-epidemiological model-based prediction of further COVID-19 epidemic outbreaks due to immunity waning","authors":"Samiran Ghosh, M. Banerjee, V. Volpert","doi":"10.1051/mmnp/2022017","DOIUrl":null,"url":null,"abstract":"We develop a new data-driven immuno-epidemiological model with distributed infectivity, recovery and death rates determined from the epidemiological, clinical and experimental data. Immunity in the population is taken into account through the time-dependent number of vaccinated people with different numbers of doses and through the acquired immunity for recovered individuals. The model is validated with the available data. We show that for the first time from the beginning of pandemic COVID-19 some countries reached collective immunity. However, the epidemic continues because of the emergence of new variant BA.2 with a larger immunity escape or disease transmission rate than the previous BA.1 variant. Large epidemic outbreaks can be expected several months later due to immunity waning. These outbreaks can be restrained by an intensive booster vaccination.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2022017","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 9
Abstract
We develop a new data-driven immuno-epidemiological model with distributed infectivity, recovery and death rates determined from the epidemiological, clinical and experimental data. Immunity in the population is taken into account through the time-dependent number of vaccinated people with different numbers of doses and through the acquired immunity for recovered individuals. The model is validated with the available data. We show that for the first time from the beginning of pandemic COVID-19 some countries reached collective immunity. However, the epidemic continues because of the emergence of new variant BA.2 with a larger immunity escape or disease transmission rate than the previous BA.1 variant. Large epidemic outbreaks can be expected several months later due to immunity waning. These outbreaks can be restrained by an intensive booster vaccination.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.