Raúl Felipe-Sosa, A. Fraguela-Collar, Yofre H. Garc'ia G'omez
{"title":"On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bi-domain model","authors":"Raúl Felipe-Sosa, A. Fraguela-Collar, Yofre H. Garc'ia G'omez","doi":"10.1051/mmnp/2023012","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the convergence of the Faedo - Galerkin approximations, in a strong sense, to a strong T-periodic solution of the torso-coupled bidomain model where $T$ is the period of activation of the inner wall of heart. First, we define the torso-coupled bi-domain operator and prove some of its more important properties for our work. After, we define the abstract evolution system of equations associated with torso-coupled bidomain model and give the definition of strong solution. We prove that the Faedo - Galerkin's approximations have the regularity of a strong solution, and we find that some restrictions can be imposed over the initial conditions, so that this sequence of Faedo - Galerkin fully converge to a strong solution of the Cauchy problem. Finally, this results are used for showing the existence a strong $T$ -periodic solution.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2023012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the convergence of the Faedo - Galerkin approximations, in a strong sense, to a strong T-periodic solution of the torso-coupled bidomain model where $T$ is the period of activation of the inner wall of heart. First, we define the torso-coupled bi-domain operator and prove some of its more important properties for our work. After, we define the abstract evolution system of equations associated with torso-coupled bidomain model and give the definition of strong solution. We prove that the Faedo - Galerkin's approximations have the regularity of a strong solution, and we find that some restrictions can be imposed over the initial conditions, so that this sequence of Faedo - Galerkin fully converge to a strong solution of the Cauchy problem. Finally, this results are used for showing the existence a strong $T$ -periodic solution.